Bovine β-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions
-
Alberto Barbiroli
Abstract
Binding of fluorine-containing drugs to bovine β-lactoglobulin, the most abundant whey protein in bovine milk, was investigated by means of 19F NMR and mass spectrometry. The stoichiometry of the binding and its stability in acidic medium, where β-lactoglobulin is folded and stable, were also studied, along with competition from molecules that can be regarded as analogs of physiological ligands to bovine β-lactoglobulin. Conditional binding data were combined with protein structural information derived from circular dichroism and limited proteolysis studies. Spectroscopic techniques were also used to assess whether the bound drugs stabilize the protein structure against denaturation by chaotropes or temperature at various pH values. The results obtained provide evidence for the presence of multiple binding regions on the protein, with a specific and different affinity for structurally different classes of hydrophobic drugs and, more generally, that bovine β-lactoglobulin can bind and protect against low pH values various classes of drugs of pharmaceutical relevance.
©2010 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- REVIEW
- Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum
- GENES AND NUCLEIC ACIDS
- Biochemical characterization of human Ecdysoneless reveals a role in transcriptional regulation
- PROTEIN STRUCTURE AND FUNCTION
- Bovine β-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions
- Structural studies of the phosphatidylinositol 3-kinase (PI3K) SH3 domain in complex with a peptide ligand: role of the anchor residue in ligand binding
- A fluorescence correlation spectroscopy study of ligand interaction with cytokinin-specific binding protein from mung bean
- The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- Phytosphingosine kills Candida albicans by disrupting its cell membrane
- CELL BIOLOGY AND SIGNALING
- Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes
- PROTEOLYSIS
- Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen
- Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis
- A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037
- NOVEL TECHNIQUES
- CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping
Artikel in diesem Heft
- REVIEW
- Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum
- GENES AND NUCLEIC ACIDS
- Biochemical characterization of human Ecdysoneless reveals a role in transcriptional regulation
- PROTEIN STRUCTURE AND FUNCTION
- Bovine β-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions
- Structural studies of the phosphatidylinositol 3-kinase (PI3K) SH3 domain in complex with a peptide ligand: role of the anchor residue in ligand binding
- A fluorescence correlation spectroscopy study of ligand interaction with cytokinin-specific binding protein from mung bean
- The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX
- MEMBRANES, LIPIDS, GLYCOBIOLOGY
- Phytosphingosine kills Candida albicans by disrupting its cell membrane
- CELL BIOLOGY AND SIGNALING
- Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes
- PROTEOLYSIS
- Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen
- Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis
- A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037
- NOVEL TECHNIQUES
- CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping