Home Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum
Article
Licensed
Unlicensed Requires Authentication

Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum

  • Silvia Senesi , Miklos Csala , Paola Marcolongo , Rosella Fulceri , Jozsef Mandl , Gabor Banhegyi and Angelo Benedetti
Published/Copyright: October 6, 2009
Biological Chemistry
From the journal Volume 391 Issue 1

Abstract

Hexose-6-phosphate dehydrogenase (H6PD) is a luminal enzyme of the endoplasmic reticulum that is distinguished from cytosolic glucose-6-phosphate dehydrogenase by several features. H6PD converts glucose-6-phosphate and NADP+ to 6-phosphogluconate and NADPH, thereby catalyzing the first two reactions of the pentose-phosphate pathway. Because the endoplasmic reticulum has a separate pyridine nucleotide pool, H6PD provides NADPH for luminal reductases. One of these enzymes, 11β-hydroxysteroid dehydrogenase type 1 responsible for prereceptorial activation of glucocorticoids, has been the focus of much attention as a probable factor in the pathomechanism of several human diseases including insulin resistance and the metabolic syndrome. This review summarizes recent advances related to the functions of H6PD.


Corresponding author

Received: 2009-8-5
Accepted: 2009-9-3
Published Online: 2009-10-06
Published in Print: 2010-01-01

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. REVIEW
  2. Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum
  3. GENES AND NUCLEIC ACIDS
  4. Biochemical characterization of human Ecdysoneless reveals a role in transcriptional regulation
  5. PROTEIN STRUCTURE AND FUNCTION
  6. Bovine β-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions
  7. Structural studies of the phosphatidylinositol 3-kinase (PI3K) SH3 domain in complex with a peptide ligand: role of the anchor residue in ligand binding
  8. A fluorescence correlation spectroscopy study of ligand interaction with cytokinin-specific binding protein from mung bean
  9. The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX
  10. MEMBRANES, LIPIDS, GLYCOBIOLOGY
  11. Phytosphingosine kills Candida albicans by disrupting its cell membrane
  12. CELL BIOLOGY AND SIGNALING
  13. Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes
  14. PROTEOLYSIS
  15. Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen
  16. Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis
  17. A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037
  18. NOVEL TECHNIQUES
  19. CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bc.2009.146/pdf
Scroll to top button