Abstract
Whether the stay-at-home order and face mask mandate are effective in slowing down the COVID-19 virus transmission is up for debate. To investigate this matter, we employ a unique angle. A two-wave logistic equation is proposed and then fitted to the cumulative case counts of all 50 states in the U.S. from the onset to early December of 2020 when vaccinating begins at large scale. The data period is confined to isolate the effects of executive orders from that of vaccination. The length of the first wave’s accelerating phase is regressed on variables describing the stay-at-home order and face mask mandate, along with control variables. A state’s lockdown duration is discovered to be negatively related to the time it takes for the virus to transit from accelerating to decelerating rates. This finding provides statistical support to the executive orders and can be useful in guiding risk management of future pandemics.
Appendix A: Dates of Stay-at-Home (Lockdown) Orders and Mask Mandates by State
State | Weeks | Time zeroa | Date maskb | Lockdown start | Lockdown end |
---|---|---|---|---|---|
analyzed | |||||
Alaska | 39 | 3/17/2020 | NA | 3/28/2020 | 4/24/2020 |
Alabama | 47 | 3/15/2020 | 7/16/2020 | 4/4/2020 | 4/30/2020 |
Arkansas | 39 | 3/14/2020 | 7/20/2020 | NA | NA |
Arizona | 39 | 3/18/2020 | NA | 3/31/2020 | 5/15/2020 |
California | 43 | 3/9/2020 | 6/18/2020 | 3/19/2020 | 8/28/2020 |
Colorado | 40 | 3/11/2020 | 7/17/2020 | 3/26/2020 | 4/26/2020 |
Connecticut | 39 | 3/15/2020 | 4/20/2020 | 3/23/2020 | 5/20/2020 |
Delaware | 40 | 3/12/2020 | 4/28/2020 | 3/24/2020 | 5/31/2020 |
Florida | 39 | 3/15/2020 | NA | 4/3/2020 | 5/4/2020 |
Georgia | 40 | 3/10/2020 | NA | 4/3/2020 | 4/30/2020 |
Hawaii | 39 | 3/14/2020 | 4/20/2020 | 3/25/2020 | 5/31/2020 |
Iowa | 40 | 3/10/2020 | 11/17/2020 | NA | NA |
Idaho | 39 | 3/18/2020 | NA | 3/25/2020 | 4/30/2020 |
Illinois | 39 | 3/15/2020 | 5/1/2020 | 3/21/2020 | 5/29/2020 |
Indiana | 39 | 3/16/2020 | 7/27/2020 | 3/24/2020 | 5/1/2020 |
Appendix A. (continued)
State | Weeks analyzed | Time zeroa | Date maskb | Lockdown start | Lockdown end |
---|---|---|---|---|---|
Kansas | 39 | 3/16/2020 | 7/3/2020 | 3/30/2020 | 5/3/2020 |
Kentucky | 39 | 3/14/2020 | 5/11/2020 | 3/26/2020 | 6/29/2020 |
Louisiana | 40 | 3/12/2020 | 7/13/2020 | 3/23/2020 | 5/15/2020 |
Massachusetts | 40 | 3/8/2020 | 5/6/2020 | 3/24/2020 | 5/18/2020 |
Maryland | 39 | 3/15/2020 | 4/18/2020 | 3/30/2020 | 5/15/2020 |
Maine | 39 | 3/14/2020 | 5/1/2020 | 4/2/2020 | 5/31/2020 |
Michigan | 41 | 3/15/2020 | 6/18/2020 | 3/24/2020 | 6/1/2020 |
Minnesota | 39 | 3/15/2020 | 7/25/2020 | 3/27/2020 | 5/17/2020 |
Missouri | 39 | 3/18/2020 | NA | 4/6/2020 | 5/3/2020 |
Mississippi | 40 | 3/15/2020 | 8/5/2020 | 4/3/2020 | 4/27/2020 |
Montana | 39 | 3/15/2020 | 7/16/2020 | 3/28/2020 | 4/26/2020 |
North Carolina | 39 | 3/15/2020 | 6/26/2020 | 3/30/2020 | 5/22/2020 |
North Dakota | 39 | 3/17/2020 | 11/14/2020 | NA | NA |
Nebraska | 40 | 3/12/2020 | NA | NA | NA |
New Hampshire | 40 | 3/10/2020 | 11/20/2020 | 3/27/2020 | 6/15/2020 |
New Jersey | 40 | 3/12/2020 | 4/8/2020 | 3/21/2020 | 6/9/2020 |
New Mexico | 39 | 3/14/2020 | 5/16/2020 | 3/24/2020 | 6/30/2020 |
Nevada | 40 | 3/12/2020 | 6/24/2020 | 4/1/2020 | 5/15/2020 |
New York | 40 | 3/9/2020 | 4/17/2020 | 3/22/2020 | 6/27/2020 |
Ohio | 39 | 3/15/2020 | 7/23/2020 | 3/23/2020 | 5/19/2020 |
Oklahoma | 42 | 3/17/2020 | NA | 3/28/2020 | 5/6/2020 |
Oregon | 40 | 3/8/2020 | 7/1/2020 | 3/23/2020 | 6/19/2020 |
Pennsylvania | 39 | 3/14/2020 | 4/19/2020 | 4/1/2020 | 6/4/2020 |
Rhode Island | 40 | 3/10/2020 | 5/8/2020 | 3/28/2020 | 5/8/2020 |
South Carolina | 40 | 3/12/2020 | NA | 4/7/2020 | 5/4/2020 |
South Dakota | 40 | 3/10/2020 | NA | NA | NA |
Tennessee | 40 | 3/13/2020 | NA | 3/31/2020 | 4/30/2020 |
Texas | 39 | 3/19/2020 | 7/3/2020 | 4/2/2020 | 4/30/2020 |
Utah | 39 | 3/15/2020 | 11/9/2020 | NA | NA |
Virginia | 40 | 3/12/2020 | 5/29/2020 | 3/30/2020 | 5/29/2020 |
Vermont | 40 | 3/12/2020 | 8/1/2020 | 3/25/2020 | 5/15/2020 |
Washington | 41 | 3/3/2020 | 6/26/2020 | 3/23/2020 | 5/31/2020 |
Wisconsin | 39 | 3/14/2020 | 8/1/2020 | 3/25/2020 | 5/13/2020 |
West Virginia | 38 | 3/20/2020 | 7/6/2020 | 3/24/2020 | 5/4/2020 |
Wyoming | 39 | 3/14/2020 | 12/7/2020 | NA | NA |
-
aTime Zero: The first day when the case count reaches 0.3 per 100,000 population in a state. bDate Mask: The day when a state first issued mask mandate.
Appendix B: Estimated Parameter Values of Overlapping Two-Wave Logistic Model
State | M 1 | b 1 | c 1 | M 2 | b 2 | c 2 | t c |
---|---|---|---|---|---|---|---|
AK | 1192.7 | 6.1380 | 0.2668 | 7464.6 | 3.6510 | 0.3342 | 26.9 |
AL | 3617.2 | 6.9706 | 0.2562 | 12,323.3 | 3.2789 | 0.2003 | 35.6 |
AR | 2747.9 | 5.3310 | 0.2585 | 11,327.7 | 2.5773 | 0.1562 | 25.8 |
AZ | 2937.0 | 7.1972 | 0.4267 | 15,984.3 | 5.3216 | 0.2854 | 26.3 |
CA | 2236.3 | 5.8663 | 0.2611 | 7733.7 | 4.4934 | 0.3470 | 33.5 |
CO | 1381.9 | 2.8277 | 0.1517 | 5053.0 | 4.3175 | 0.4723 | 28.6 |
CT | 1374.6 | 3.4587 | 0.4784 | 7620.4 | 6.5856 | 0.2836 | 18.5 |
DC | 1517.6 | 4.0142 | 0.4697 | 6481.6 | 2.5582 | 0.0745 | 14.9 |
DE | 1838.4 | 2.8988 | 0.2293 | 9217.0 | 8.4352 | 0.1697 | 23.4 |
FL | 3203.7 | 7.4498 | 0.3928 | 17,802.5 | 3.9691 | 0.1661 | 26.9 |
GA | 3616.7 | 5.1504 | 0.2386 | 12,191.7 | 3.2676 | 0.1810 | 30.8 |
HI | 416.4 | 3.1745 | 0.0966 | 2565.7 | 0.0100 | 0.1500 | 19.9 |
IA | 5301.1 | 3.9277 | 0.1353 | 5310.3 | 2.9700 | 0.6968 | 32.1 |
ID | 2628.1 | 6.4775 | 0.3061 | 10,154.6 | 3.6454 | 0.2314 | 23.1 |
IL | 1081.8 | 8.3676 | 0.5426 | 3915.6 | 2.5185 | 0.1341 | 19.9 |
IN | 2722.3 | 3.2450 | 0.1331 | 6824.4 | 3.4215 | 0.3945 | 29.0 |
KS | 3664.8 | 4.2580 | 0.1542 | 4907.8 | 2.8904 | 0.5374 | 31.1 |
KY | 2555.2 | 4.5164 | 0.1676 | 13,472.3 | 3.2220 | 0.2114 | 28.6 |
LA | 6819.6 | 3.8725 | 0.1548 | 17,049.0 | 4.5871 | 0.1840 | 24.3 |
MA | 1552.3 | 4.5159 | 0.5588 | 11,287.3 | 6.0742 | 0.2026 | 17.2 |
MD | 2004.1 | 2.9456 | 0.2031 | 10,915.0 | 3.9944 | 0.1842 | 25.5 |
ME | 353.6 | 2.9525 | 0.2323 | 3074.1 | 5.1589 | 0.2707 | 24.5 |
MI | 2600.1 | 2.8533 | 0.1566 | 4060.6 | 3.4779 | 0.4223 | 29.7 |
MN | 2486.8 | 3.6561 | 0.1561 | 6133.7 | 3.7083 | 0.5312 | 29.9 |
MO | 4253.7 | 4.8993 | 0.1699 | 4453.2 | 2.3943 | 0.5074 | 31.3 |
MS | 3782.3 | 4.7373 | 0.2265 | 16,933.7 | 3.3728 | 0.1552 | 28.2 |
MT | 1093.5 | 7.1141 | 0.3089 | 8494.0 | 2.9876 | 0.3204 | 26.9 |
NC | 2113.0 | 4.7561 | 0.2400 | 11,423.3 | 2.9777 | 0.1374 | 26.4 |
ND | 13,653.5 | 5.8890 | 0.1576 | 10,400.6 | 2.3699 | 0.4621 | 29.5 |
NE | 1666.5 | 3.8065 | 0.2504 | 18,653.3 | 4.4438 | 0.2165 | 22.9 |
NH | 529.9 | 3.3412 | 0.3004 | 6087.8 | 6.3870 | 0.3258 | 23.9 |
NJ | 1998.0 | 3.6243 | 0.5371 | 14,475.5 | 6.4628 | 0.2177 | 16.8 |
NM | 1491.9 | 3.7483 | 0.2084 | 6705.4 | 4.4248 | 0.4186 | 27.6 |
NV | 3631.4 | 5.6660 | 0.2525 | 17,659.2 | 4.9138 | 0.2318 | 24.4 |
NY | 2054.0 | 3.6623 | 0.5767 | 11,310.7 | 6.1352 | 0.1814 | 16.0 |
OH | 1723.7 | 3.6577 | 0.1658 | 4990.3 | 3.7323 | 0.4341 | 29.6 |
OK | 3715.8 | 5.3430 | 0.1854 | 6070.2 | 2.5907 | 0.3775 | 33.0 |
OR | 924.6 | 4.8890 | 0.2189 | 6101.9 | 3.9602 | 0.2596 | 29.5 |
PA | 1225.4 | 2.4333 | 0.1708 | 9846.2 | 4.8770 | 0.2866 | 26.2 |
RI | 1768.4 | 3.9561 | 0.4379 | 19,506.7 | 6.1336 | 0.2368 | 18.9 |
Appendix B. (continued)
State | M 1 | b 1 | c 1 | M 2 | b 2 | c 2 | t c |
---|---|---|---|---|---|---|---|
SC | 2873.8 | 6.3033 | 0.3198 | 14,763.0 | 3.1737 | 0.1324 | 26.9 |
SD | 1158.3 | 3.4188 | 0.2572 | 12,714.7 | 4.6644 | 0.2903 | 20.6 |
TN | 3185.6 | 4.9788 | 0.2357 | 20,973.1 | 3.4999 | 0.1871 | 27.5 |
TX | 2601.9 | 5.9794 | 0.3085 | 4861.9 | 2.8901 | 0.2696 | 26.9 |
UT | 1952.0 | 4.6408 | 0.2542 | 12,070.9 | 3.6366 | 0.2369 | 24.4 |
VA | 2046.1 | 3.4226 | 0.1704 | 9792.6 | 3.3706 | 0.1701 | 28.6 |
VT | 275.7 | 1.7227 | 0.1699 | 1164.9 | 5.4128 | 0.4413 | 27.3 |
WA | 1455.8 | 3.6386 | 0.1622 | 2468.5 | 3.3624 | 0.4120 | 32.3 |
WI | 2234.3 | 4.2175 | 0.1911 | 9042.2 | 3.3392 | 0.3186 | 25.6 |
WV | 2017.0 | 4.6473 | 0.1549 | 3982.3 | 2.9618 | 0.4185 | 30.6 |
WY | 3253.4 | 4.5376 | 0.1279 | 7091.7 | 3.6237 | 0.4960 | 29.2 |
-
SE: standard error of estimation.
References
Association of American Medical Colleges (AAMC). 2019. 2019, State Physician Workforce Data Report. Washington: AAMC.Search in Google Scholar
Aiello, A. E., G. F. Murray, V. Perez, R. M. Coulborn, B. M. Davis, M. Uddin, D. K. Shay, S. H. Waterman, and A. S. Monto. 2010. “Mask Use, Hand Hygiene, and Seasonal Influenza-like Illness Among Young Adults: A Randomized Intervention Trial.” The Journal of Infectious Diseases 201 (4): 491–8. https://doi.org/10.1086/650396.Search in Google Scholar
Barrese, J., P. Wang, and J. Zhang. 2016. “The Effects of Urbanization on Insurance Consumption – The Experience of China.” Risk Management and Insurance Review 19 (2): 285–306. https://doi.org/10.1111/rmir.12063.Search in Google Scholar
Bean, M. 2019. “50 States Ranked by Amount of Active Nurses.” In Becker’s Hospital Review. Also available at https://www.beckershospitalreview.com/quality/50-states-ranked-by-amount-of-active-nurses.html (accessed January 28, 2019).Search in Google Scholar
Beck, T., and I. Webb. 2003. “Economic, Demographic, and Institutional Determinants of Life Insurance Consumption across Countries.” The World Bank Economic Review 17 (1): 51–88. https://doi.org/10.1093/wber/lhg011.Search in Google Scholar
Bennett, L., and G. Waterer. 2016. “Control Measures for Human Respiratory Viral Infection.” Seminars in Respiratory and Critical Care Medicine 37 (4): 632–40. https://doi.org/10.1055/s-0036-1584792.Search in Google Scholar
Browne, M. J., J. W. Chung, and E. W. Frees. 2000. “International P&C Insurance Consumption.” Journal of Risk & Insurance 67 (1): 73–90. https://doi.org/10.2307/253677.Search in Google Scholar
Carias, C., G. Rainisch, M. Shankar, B. B. Adhikari, D. L. Swerdlow, W. A. Bower, S. K. Pillai, M. I. Meltzer, and L. M. Koonin. 2015. “Potential Demand for Respirators and Surgical Masks during a Hypothetical Influenza Pandemic in the United States.” Clinical Infectious Diseases 60: S42–51. https://doi.org/10.1093/cid/civ141.Search in Google Scholar
Centers for Disease Control (CDC). 2018. 1918 Pandemic Influenza: Three Waves. Also Available at https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/three-waves.htm.Search in Google Scholar
Centers for Disease Control (CDC). 2020. COVID-19 Pandemic Planning Scenarios. Also available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.Search in Google Scholar
Chatterjee, S., B. Shayak, A. Asad, S. Bhattacharya, S. Alam, and M. K. Verma. 2020. “Evolution of COVID-19 Pandemic: Power Law Growth and Saturation.” medRxiv medRxiv:2020.05.05.20091389.10.1101/2020.05.05.20091389Search in Google Scholar
Chen, R., and P. Wang. 2008. “Modeling Cumulative Cases from SARS.” Asia-Pacific Journal of Risk and Insurance 2 (2): 31–46.10.2202/2153-3792.1020Search in Google Scholar
Chowell, G., and R. Luo. 2021. “Ensemble Bootstrap Methodology for Forecasting Dynamic Growth Processes Using Differential Equations: Application to Epidemic Outbreaks.” BMC Medical Research Methodology 21: 34. https://doi.org/10.1186/s12874-021-01226-9.Search in Google Scholar
Chowell, G., and K. Mizumoto. 2020. “The COVID-19 Pandemic in the USA: What Might We Expect?” The Lancet 395: 1093–4. https://doi.org/10.1016/s0140-6736(20)30743-1.Search in Google Scholar
Clerkin, K. J., J. A. Fried, J. Raikhelkar, G. Sayer, J. M. Griffin, A. Masoumi, S. S. Jain, D. Burkhoff, D. Kumarajah, L. Rabbani, A. Schwartz, and N. Uriel. 2020. “COVID-19 and Cardiovascular Disease.” Circulation 141 (20): 1648–55. https://doi.org/10.1161/circulationaha.120.046941.Search in Google Scholar
Cowling, B. J., Y. Zhou, D. K. M. Ip, G. M. Leung, and A. E. Aiello. 2010. “Face Masks to Prevent Transmission of Influenza Virus: A Systematic Review.” Epidemiology and Infection 138 (4): 449–56. https://doi.org/10.1017/S0950268809991658.Search in Google Scholar
Cramer, J. S. 2004. “The Early Origins of the Logit Model.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35 (4): 613–26. https://doi.org/10.1016/j.shpsc.2004.09.003.Search in Google Scholar
Deakin, J., M. Aitken, T. Robbins, and B. J. Sahakian. 2004. “Risk Taking during Decision-Making in Normal Volunteers Changes with Age.” Journal of the International Neuropsychological Society 10 (4): 590–8. https://doi.org/10.1017/s1355617704104104.Search in Google Scholar
Debecker, A., and T. Modis. 2021. “Poorly Known Aspects of Flattening the Curve of COVID-19.” Technological Forecasting and Social Change 163: 120432. https://doi.org/10.1016/j.techfore.2020.120432.Search in Google Scholar
Eikenberry, S., M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, and A. B. Gumel. 2020. “To Mask or Not to Mask, Modeling for the Potential for Face Mask Use by the General Public to Curtail the COVID-19 Pandemic.” Infectious Disease Modeling 5: 293–308. https://doi.org/10.1016/j.idm.2020.04.001.Search in Google Scholar
EpiForecasts. 2020. Global Summary. Also available at https://epiforecasts.io/covid/posts/global/.Search in Google Scholar
Ewing, T. E. 2020. Flu Masks Failed in 1918, But We Need Them Now. Also available at https://www.healthaffairs.org/do/10.1377/hblog20200508.769108/full/.Search in Google Scholar
Fowler, J. H., S. J. Hill, R. Levin, and N. Obradovich. 2020. The Effect of Stay-at-Home Orders on COVID-19 Cases and Fatalities in the United States. https://doi.org/10.1101/2020.04.13.20063628.10.1101/2020.04.13.20063628Search in Google Scholar
Gage, T. B., and C. J. Mode. 1993. “Some Laws of Mortality: How Do They Fit?” Human Biology 65 (3): 445–61.Search in Google Scholar
Gianfelice, P. R. L., R. S. Oyarzabal, A. Cunha Jr., J. M. V. Grzybowski, F. da Conceicao Batista, and E. E. N. Macau. 2022. “The Starting Dates of COVID-19 Multiple Waves.” Chaos 32: 031101, https://doi.org/10.1063/5.0079904.Search in Google Scholar
Holshue, M. L., C. DeBolt, S. Lindquist, H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L. Fox, A. Patel, S. I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M. A. Pallansch, W. C. Weldon, H. M. Biggs, T. M. Uyeki, S. Pillai, and Washington State 2019-nCOV Case Investigation Team. 2020. “Chas Bolt, Scott Lindquist, Kathy First Case of 2019 Novel Coronavirus in the United States.” North England Journal of Medicine 382 (10): 929–36. https://doi.org/10.1056/nejmoa2001191.Search in Google Scholar
Howard, J., A. Huang, and Z. Li. 2021. “An Evidence Review of Face Masks against COVID-19.” Proceedings of the National Academy of Sciences of the United States of America 118 (4): 564118. https://doi.org/10.1073/pnas.2014564118.Search in Google Scholar
Jacobs, P., and A. P. Ohinmaa. 2020. “The Enforcement of Statewide Mask Wearing Mandates to Prevent COVID-19 in the US: An Overview.” F1000Research 9: 1100, https://doi.org/10.12688/f1000research.25907.1.Search in Google Scholar
Jefferson, T., R. Foxlee, C. Del Mar, L. Dooley, E. Ferroni, B. Hewak, A. Prabhala, S. Nair, and A. Rivette. 2008. “Physical Intervention to Interrupt or Reduce the Spread of Respiratory Viruses: Systematic Review.” BMJ 336: 77. https://doi.org/10.1136/bmj.39393.510347.be.Search in Google Scholar
Kermack, W. O., and A. G. McKendrick. 1927. “Contributions to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society. Series A, Containing Papers of a Mathematical and Physical Character 115 (5): 700–21.10.1098/rspa.1927.0118Search in Google Scholar
Kmenta, J. 1997. Elements of Econometrics, 2nd ed., 652–68. Ann Arbor: The University of Michigan Press.10.3998/mpub.15701Search in Google Scholar
Kronbichler, A., D. Kresse, S. Yoon, K. Hwa Lee, M. Effenberger, and J. I. Shin. 2020. “Asymptomatic Patients as A Source of COVID-19 Infections: A Systematic Review and Meta-Analysis.” International Journal of Infectious Diseases 98: 180–6. https://doi.org/10.1016/j.ijid.2020.06.052.Search in Google Scholar
Lee, S. B., J. H. Oh, J. H. Park, S. P. Choi, and J. H. Wee. 2018. “Differences in Youngest-Old, Middle-Old, and Oldest-Old Patients Who Visit the Emergency Department.” Clinical and Experimental Emergency Medicine 5 (4): 249–55. https://doi.org/10.15441/ceem.17.261.Search in Google Scholar
Li, Z., S. Lin, J. Rui, Y. Bai, B. Deng, Q. Chen, Y. Zhu, L. Luo, S. Yu, W. Liu, S. Zhang, Y. Su, B. Zhao, H. Zhang, Y. Chiang, J. Liu, K. Luo, and T. Chen. 2022. “An Easy-To-Use Public Health-Driven Method (The Generalized Logistic Differential Equation Model) Accurately Simulated COVID-19 Epidemic in Wuhan and Correctly Determined the Early Warning Time.” Frontiers in Public Health 2022: 813860. https://doi.org/10.3389/fpubh.2022.813860.Search in Google Scholar
MacIntyre, C. R., S. Cauchemez, D. E. Dwyer, H. Seale, P. Cheung, G. Browne, M. Fasher, J. Wood, Z. Gao, R. Booy, and N. Ferguson. 2009. “Face Mask Use and Control of Respiratory Virus Transmission in Households.” Emerging Infectious Diseases 15 (2): 232–40. https://doi.org/10.3201/eid1502.081166.Search in Google Scholar
MacIntyre, C. R., Q. Wang, S. Cauchemez, H. Seale, E. D. Dwyer, P. Yang,W. Shi,Z. Gao,X. Pang,Y. Zhang,X. Wang,W. Duan,B. Rahman,N. Ferguson. 2011. “A Cluster Randomized Clinical Trial Comparing Fit-Tested and Non-fit-tested N95 Respirators to Medical Masks to Prevent Respiratory Virus Infection in Health Care Workers.” Influenza and Other Respiratory Viruses 5: 170–9. https://doi.org/10.1111/j.1750-2659.2011.00198.x.Search in Google Scholar
Markel, H., H. B. Lipman, J. A. Navarro, A. Sloan, J. R. Michalsen, A. M. Stern, and M. S. Cetron. 2007. “Nonpharmaceutical Interventions Implmented by US Cities During the 1918–1919 Influenza Pandemic.” JAMA 298 (6): 644–54.10.1001/jama.298.6.644Search in Google Scholar
Merrin, J. 2020. “Differences in Power-Law Growth over Time and Indicators of COVID-19 Pandemic Progression Worldwide.” Physical Biology 17: 06005. https://doi.org/10.1088/1478-3975/abb2db.Search in Google Scholar
Michas, F. 2020. Number of Staffed Beds in U.S. Hospitals by State as of May 2020. Also available at https://www.statista.com/statistics/710488/staffed-beds-in-us-hospitals-by-state/.Search in Google Scholar
Mizumoto, K., K. Kagaya, A. Zarebski, and G. Chowell. 2020. “Estimating the Asymptomatic Proportion of Coronavirus Disease 2019 (COVID-19) Cases on Board the Diamond Princess Cruise Ship, Yokohama, Japan, 2020.” Euro Surveillance 25 (10): 2000180. https://doi.org/10.2807/1560-7917.es.2020.25.10.2000180.Search in Google Scholar
Nakazawa, E., H. Ino, and A. Akabayashi. 2020. “Chronology of COVID-19 Cases on the Diamond Princess Cruise Ship and Ethical Considerations: A Report from Japan.” Disaster Medicine and Public Health Preparedness 14 (4): 506–13. https://doi.org/10.1017/dmp.2020.50.Search in Google Scholar
Ofner-Agostini, M., T. Willington, B. Henry, D. Low, L. C. McDonald, L. Berger, B. Mederski, SARS Investigative Team, and T. Wong. 2008. “Investigation of the Second Wave of Severe Acute Respiratory Syndrome in Toronto, Canada.” Canada Communicable Disease Report 34 (2): 1–11.Search in Google Scholar
Pelinovsky, E., A. Kurkin, O. Kurkina, M. Kokoulina, and A. Epifanova. 2020. “Logistic Equation and COVID-19.” Chaos, Solutions and Fractals 140 (2020): 110241.10.1016/j.chaos.2020.110241Search in Google Scholar
Powell, M., and D. Ansic. 1997. “Gender Differences in Risk Behavior in Financial Decision-Making: An Experimental Analysis.” Journal of Economic Psychology 18 (6): 605–28. https://doi.org/10.1016/s0167-4870(97)00026-3.Search in Google Scholar
Roalf, D. R., S. H. Mitchell, W. T. Harbaugh, and J. S. Janowsky. 2012. “Risk, Reward, and Economic Decision Making in Aging.” Journal of Geology, Series B 67B (3): 289–98. https://doi.org/10.1093/geronb/gbr099.Search in Google Scholar
Schwellenbach, N. 2020. The First 100 Days of the U.S Government’s COVID-19 Response. Also available at https://www.pogo.org/analysis/2020/05/the-first-100-days-of-the-u-s-governments-COVID-19-response/.Search in Google Scholar
Sonfield, M., R. Lussier, J. Corman, and M. Mckinney. 2001. “Gender Comparison in Strategic Decision-Making: An Empirical Analysis of the Entrepreneurial Strategy Matrix.” Journal of Small Business Management 39 (2): 165–73. https://doi.org/10.1111/1540-627x.00015.Search in Google Scholar
Syed, Q., W. Sopwith, M. Regan, and M. Bellis. 2003. “Behind the Mask, Journey through an Epidemic: Some Observations of Contrasting Public Health Responses to SARS.” Journal of Epidemiology & Community Health 57: 855–6. https://doi.org/10.1136/jech.57.11.855.Search in Google Scholar
Tindale, L. C., M. Coombe, J. E. Stockdale, E. S. Garlock, W. Y. V. Lau, M. Saraswat, L. Zhang, D. Chen, J. Wallinga, and C. Colijn. 2020. “Transmission Interval Estimates Suggest Pre-symptomatic Spread of COVID-19.” MedRxiv, eLife 9: e57149. https://doi.org/10.7554/eLife.57149.Search in Google Scholar
Vasconcelos, G. L., A. M. S. Macêdo, R. Ospina, F. A. G. Almeida, G. C. Duarte-Filho, A. A. Brum, and I. C. L. Souza. 2020. “Modelling Fatality Curves of COVID-19 and the Effectiveness of Intervention Strategies.” PeerJ 8: e9421. https://doi.org/10.7717/peerj.9421.Search in Google Scholar
Vasconcelos, G. L., A. A. Brum, F. A. G. Almeida, A. Macedo, G. C. Duarte-Filho, and R. Ospina. 2021a. “Standard and Anomalous Waves of COVID-19: A Multiple-Wave Growth Model for Epidemics.” Brazilian Journal of Physics 51: 1867–83. https://doi.org/10.1007/s13538-021-00996-3.Search in Google Scholar
Vasconcelos, G. L., A. M. S. Macêdo, G. C. Duarte-Filho, A. A. Brum, R. Ospina, and F. A. G. Almeida. 2021b. “Power Law Behavior in the Saturation Regime of Fatality Curves of the COVID-19 Pandemic.” Scientific Reports 11: 4619. https://doi.org/10.1038/s41598-021-84165-1.Search in Google Scholar
World Health Organization. 2013. Evolution of a Pandemic: A(H1N1) 2009, April 2009–August 2010, 2nd ed.Search in Google Scholar
Wu, K., D. Darcet, Q. Wang, and D. Sornette. 2020. “Generalized Logistic Growth Modeling of the COVID-19 Outbreak: Comparing the Dynamics in the 29 Provinces in China and in the Rest of the World.” Nonlinear Dynamics 101: 1561–81. https://doi.org/10.1007/s11071-020-05862-6.Search in Google Scholar
Yuan, J., L. Zhang, W. Xu, J. Shen, P. Zhang, and H. Ma. 2009. “Reported Changes in Health-Relate Behaviors in Chinese Urban Residents in Response to an Influenza Pandemic.” Epidemiology and Infection 137 (7): 988–93. https://doi.org/10.1017/s0950268809002726.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Featured Articles (Research Paper)
- Are Stay-at-Home and Face Mask Orders Effective in Slowing Down COVID-19 Transmission? – A Statistical Study of U.S. Case Counts in 2020
- The Impact of GATS on the Insurance Sector: Empirical Evidence from Pakistan
- Processing of Information from Risk Maps in India and Germany: The Influence of Cognitive Reflection, Numeracy, and Experience
- The Determinants of Credit Rating and the Effect of Regulatory Disclosure Requirements: Evidence from an Emerging Market
- Automatic Segmentation of Insurance Rating Classes Under Ordinal Constraints via Group Fused Lasso
Articles in the same Issue
- Frontmatter
- Featured Articles (Research Paper)
- Are Stay-at-Home and Face Mask Orders Effective in Slowing Down COVID-19 Transmission? – A Statistical Study of U.S. Case Counts in 2020
- The Impact of GATS on the Insurance Sector: Empirical Evidence from Pakistan
- Processing of Information from Risk Maps in India and Germany: The Influence of Cognitive Reflection, Numeracy, and Experience
- The Determinants of Credit Rating and the Effect of Regulatory Disclosure Requirements: Evidence from an Emerging Market
- Automatic Segmentation of Insurance Rating Classes Under Ordinal Constraints via Group Fused Lasso