Home Are Stay-at-Home and Face Mask Orders Effective in Slowing Down COVID-19 Transmission? – A Statistical Study of U.S. Case Counts in 2020
Article
Licensed
Unlicensed Requires Authentication

Are Stay-at-Home and Face Mask Orders Effective in Slowing Down COVID-19 Transmission? – A Statistical Study of U.S. Case Counts in 2020

  • Ping Wang EMAIL logo and Huy Le
Published/Copyright: August 10, 2022

Abstract

Whether the stay-at-home order and face mask mandate are effective in slowing down the COVID-19 virus transmission is up for debate. To investigate this matter, we employ a unique angle. A two-wave logistic equation is proposed and then fitted to the cumulative case counts of all 50 states in the U.S. from the onset to early December of 2020 when vaccinating begins at large scale. The data period is confined to isolate the effects of executive orders from that of vaccination. The length of the first wave’s accelerating phase is regressed on variables describing the stay-at-home order and face mask mandate, along with control variables. A state’s lockdown duration is discovered to be negatively related to the time it takes for the virus to transit from accelerating to decelerating rates. This finding provides statistical support to the executive orders and can be useful in guiding risk management of future pandemics.


Corresponding author: Ping Wang, Greenberg School of Risk Management, Insurance and Actuarial Science, St John’s University, 101 Astor Place, New York, NY, 10003, USA, E-mail:

Appendix A: Dates of Stay-at-Home (Lockdown) Orders and Mask Mandates by State

State Weeks Time zeroa Date maskb Lockdown start Lockdown end
analyzed
Alaska 39 3/17/2020 NA 3/28/2020 4/24/2020
Alabama 47 3/15/2020 7/16/2020 4/4/2020 4/30/2020
Arkansas 39 3/14/2020 7/20/2020 NA NA
Arizona 39 3/18/2020 NA 3/31/2020 5/15/2020
California 43 3/9/2020 6/18/2020 3/19/2020 8/28/2020
Colorado 40 3/11/2020 7/17/2020 3/26/2020 4/26/2020
Connecticut 39 3/15/2020 4/20/2020 3/23/2020 5/20/2020
Delaware 40 3/12/2020 4/28/2020 3/24/2020 5/31/2020
Florida 39 3/15/2020 NA 4/3/2020 5/4/2020
Georgia 40 3/10/2020 NA 4/3/2020 4/30/2020
Hawaii 39 3/14/2020 4/20/2020 3/25/2020 5/31/2020
Iowa 40 3/10/2020 11/17/2020 NA NA
Idaho 39 3/18/2020 NA 3/25/2020 4/30/2020
Illinois 39 3/15/2020 5/1/2020 3/21/2020 5/29/2020
Indiana 39 3/16/2020 7/27/2020 3/24/2020 5/1/2020

Appendix A. (continued)

State Weeks analyzed Time zeroa Date maskb Lockdown start Lockdown end
Kansas 39 3/16/2020 7/3/2020 3/30/2020 5/3/2020
Kentucky 39 3/14/2020 5/11/2020 3/26/2020 6/29/2020
Louisiana 40 3/12/2020 7/13/2020 3/23/2020 5/15/2020
Massachusetts 40 3/8/2020 5/6/2020 3/24/2020 5/18/2020
Maryland 39 3/15/2020 4/18/2020 3/30/2020 5/15/2020
Maine 39 3/14/2020 5/1/2020 4/2/2020 5/31/2020
Michigan 41 3/15/2020 6/18/2020 3/24/2020 6/1/2020
Minnesota 39 3/15/2020 7/25/2020 3/27/2020 5/17/2020
Missouri 39 3/18/2020 NA 4/6/2020 5/3/2020
Mississippi 40 3/15/2020 8/5/2020 4/3/2020 4/27/2020
Montana 39 3/15/2020 7/16/2020 3/28/2020 4/26/2020
North Carolina 39 3/15/2020 6/26/2020 3/30/2020 5/22/2020
North Dakota 39 3/17/2020 11/14/2020 NA NA
Nebraska 40 3/12/2020 NA NA NA
New Hampshire 40 3/10/2020 11/20/2020 3/27/2020 6/15/2020
New Jersey 40 3/12/2020 4/8/2020 3/21/2020 6/9/2020
New Mexico 39 3/14/2020 5/16/2020 3/24/2020 6/30/2020
Nevada 40 3/12/2020 6/24/2020 4/1/2020 5/15/2020
New York 40 3/9/2020 4/17/2020 3/22/2020 6/27/2020
Ohio 39 3/15/2020 7/23/2020 3/23/2020 5/19/2020
Oklahoma 42 3/17/2020 NA 3/28/2020 5/6/2020
Oregon 40 3/8/2020 7/1/2020 3/23/2020 6/19/2020
Pennsylvania 39 3/14/2020 4/19/2020 4/1/2020 6/4/2020
Rhode Island 40 3/10/2020 5/8/2020 3/28/2020 5/8/2020
South Carolina 40 3/12/2020 NA 4/7/2020 5/4/2020
South Dakota 40 3/10/2020 NA NA NA
Tennessee 40 3/13/2020 NA 3/31/2020 4/30/2020
Texas 39 3/19/2020 7/3/2020 4/2/2020 4/30/2020
Utah 39 3/15/2020 11/9/2020 NA NA
Virginia 40 3/12/2020 5/29/2020 3/30/2020 5/29/2020
Vermont 40 3/12/2020 8/1/2020 3/25/2020 5/15/2020
Washington 41 3/3/2020 6/26/2020 3/23/2020 5/31/2020
Wisconsin 39 3/14/2020 8/1/2020 3/25/2020 5/13/2020
West Virginia 38 3/20/2020 7/6/2020 3/24/2020 5/4/2020
Wyoming 39 3/14/2020 12/7/2020 NA NA
  1. aTime Zero: The first day when the case count reaches 0.3 per 100,000 population in a state. bDate Mask: The day when a state first issued mask mandate.

Appendix B: Estimated Parameter Values of Overlapping Two-Wave Logistic Model

State M 1 b 1 c 1 M 2 b 2 c 2 t c
AK 1192.7 6.1380 0.2668 7464.6 3.6510 0.3342 26.9
AL 3617.2 6.9706 0.2562 12,323.3 3.2789 0.2003 35.6
AR 2747.9 5.3310 0.2585 11,327.7 2.5773 0.1562 25.8
AZ 2937.0 7.1972 0.4267 15,984.3 5.3216 0.2854 26.3
CA 2236.3 5.8663 0.2611 7733.7 4.4934 0.3470 33.5
CO 1381.9 2.8277 0.1517 5053.0 4.3175 0.4723 28.6
CT 1374.6 3.4587 0.4784 7620.4 6.5856 0.2836 18.5
DC 1517.6 4.0142 0.4697 6481.6 2.5582 0.0745 14.9
DE 1838.4 2.8988 0.2293 9217.0 8.4352 0.1697 23.4
FL 3203.7 7.4498 0.3928 17,802.5 3.9691 0.1661 26.9
GA 3616.7 5.1504 0.2386 12,191.7 3.2676 0.1810 30.8
HI 416.4 3.1745 0.0966 2565.7 0.0100 0.1500 19.9
IA 5301.1 3.9277 0.1353 5310.3 2.9700 0.6968 32.1
ID 2628.1 6.4775 0.3061 10,154.6 3.6454 0.2314 23.1
IL 1081.8 8.3676 0.5426 3915.6 2.5185 0.1341 19.9
IN 2722.3 3.2450 0.1331 6824.4 3.4215 0.3945 29.0
KS 3664.8 4.2580 0.1542 4907.8 2.8904 0.5374 31.1
KY 2555.2 4.5164 0.1676 13,472.3 3.2220 0.2114 28.6
LA 6819.6 3.8725 0.1548 17,049.0 4.5871 0.1840 24.3
MA 1552.3 4.5159 0.5588 11,287.3 6.0742 0.2026 17.2
MD 2004.1 2.9456 0.2031 10,915.0 3.9944 0.1842 25.5
ME 353.6 2.9525 0.2323 3074.1 5.1589 0.2707 24.5
MI 2600.1 2.8533 0.1566 4060.6 3.4779 0.4223 29.7
MN 2486.8 3.6561 0.1561 6133.7 3.7083 0.5312 29.9
MO 4253.7 4.8993 0.1699 4453.2 2.3943 0.5074 31.3
MS 3782.3 4.7373 0.2265 16,933.7 3.3728 0.1552 28.2
MT 1093.5 7.1141 0.3089 8494.0 2.9876 0.3204 26.9
NC 2113.0 4.7561 0.2400 11,423.3 2.9777 0.1374 26.4
ND 13,653.5 5.8890 0.1576 10,400.6 2.3699 0.4621 29.5
NE 1666.5 3.8065 0.2504 18,653.3 4.4438 0.2165 22.9
NH 529.9 3.3412 0.3004 6087.8 6.3870 0.3258 23.9
NJ 1998.0 3.6243 0.5371 14,475.5 6.4628 0.2177 16.8
NM 1491.9 3.7483 0.2084 6705.4 4.4248 0.4186 27.6
NV 3631.4 5.6660 0.2525 17,659.2 4.9138 0.2318 24.4
NY 2054.0 3.6623 0.5767 11,310.7 6.1352 0.1814 16.0
OH 1723.7 3.6577 0.1658 4990.3 3.7323 0.4341 29.6
OK 3715.8 5.3430 0.1854 6070.2 2.5907 0.3775 33.0
OR 924.6 4.8890 0.2189 6101.9 3.9602 0.2596 29.5
PA 1225.4 2.4333 0.1708 9846.2 4.8770 0.2866 26.2
RI 1768.4 3.9561 0.4379 19,506.7 6.1336 0.2368 18.9

Appendix B. (continued)

State M 1 b 1 c 1 M 2 b 2 c 2 t c
SC 2873.8 6.3033 0.3198 14,763.0 3.1737 0.1324 26.9
SD 1158.3 3.4188 0.2572 12,714.7 4.6644 0.2903 20.6
TN 3185.6 4.9788 0.2357 20,973.1 3.4999 0.1871 27.5
TX 2601.9 5.9794 0.3085 4861.9 2.8901 0.2696 26.9
UT 1952.0 4.6408 0.2542 12,070.9 3.6366 0.2369 24.4
VA 2046.1 3.4226 0.1704 9792.6 3.3706 0.1701 28.6
VT 275.7 1.7227 0.1699 1164.9 5.4128 0.4413 27.3
WA 1455.8 3.6386 0.1622 2468.5 3.3624 0.4120 32.3
WI 2234.3 4.2175 0.1911 9042.2 3.3392 0.3186 25.6
WV 2017.0 4.6473 0.1549 3982.3 2.9618 0.4185 30.6
WY 3253.4 4.5376 0.1279 7091.7 3.6237 0.4960 29.2
  1. SE: standard error of estimation.

References

Association of American Medical Colleges (AAMC). 2019. 2019, State Physician Workforce Data Report. Washington: AAMC.Search in Google Scholar

Aiello, A. E., G. F. Murray, V. Perez, R. M. Coulborn, B. M. Davis, M. Uddin, D. K. Shay, S. H. Waterman, and A. S. Monto. 2010. “Mask Use, Hand Hygiene, and Seasonal Influenza-like Illness Among Young Adults: A Randomized Intervention Trial.” The Journal of Infectious Diseases 201 (4): 491–8. https://doi.org/10.1086/650396.Search in Google Scholar

Barrese, J., P. Wang, and J. Zhang. 2016. “The Effects of Urbanization on Insurance Consumption – The Experience of China.” Risk Management and Insurance Review 19 (2): 285–306. https://doi.org/10.1111/rmir.12063.Search in Google Scholar

Bean, M. 2019. “50 States Ranked by Amount of Active Nurses.” In Becker’s Hospital Review. Also available at https://www.beckershospitalreview.com/quality/50-states-ranked-by-amount-of-active-nurses.html (accessed January 28, 2019).Search in Google Scholar

Beck, T., and I. Webb. 2003. “Economic, Demographic, and Institutional Determinants of Life Insurance Consumption across Countries.” The World Bank Economic Review 17 (1): 51–88. https://doi.org/10.1093/wber/lhg011.Search in Google Scholar

Bennett, L., and G. Waterer. 2016. “Control Measures for Human Respiratory Viral Infection.” Seminars in Respiratory and Critical Care Medicine 37 (4): 632–40. https://doi.org/10.1055/s-0036-1584792.Search in Google Scholar

Browne, M. J., J. W. Chung, and E. W. Frees. 2000. “International P&C Insurance Consumption.” Journal of Risk & Insurance 67 (1): 73–90. https://doi.org/10.2307/253677.Search in Google Scholar

Carias, C., G. Rainisch, M. Shankar, B. B. Adhikari, D. L. Swerdlow, W. A. Bower, S. K. Pillai, M. I. Meltzer, and L. M. Koonin. 2015. “Potential Demand for Respirators and Surgical Masks during a Hypothetical Influenza Pandemic in the United States.” Clinical Infectious Diseases 60: S42–51. https://doi.org/10.1093/cid/civ141.Search in Google Scholar

Centers for Disease Control (CDC). 2018. 1918 Pandemic Influenza: Three Waves. Also Available at https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/three-waves.htm.Search in Google Scholar

Centers for Disease Control (CDC). 2020. COVID-19 Pandemic Planning Scenarios. Also available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.Search in Google Scholar

Chatterjee, S., B. Shayak, A. Asad, S. Bhattacharya, S. Alam, and M. K. Verma. 2020. “Evolution of COVID-19 Pandemic: Power Law Growth and Saturation.” medRxiv medRxiv:2020.05.05.20091389.10.1101/2020.05.05.20091389Search in Google Scholar

Chen, R., and P. Wang. 2008. “Modeling Cumulative Cases from SARS.” Asia-Pacific Journal of Risk and Insurance 2 (2): 31–46.10.2202/2153-3792.1020Search in Google Scholar

Chowell, G., and R. Luo. 2021. “Ensemble Bootstrap Methodology for Forecasting Dynamic Growth Processes Using Differential Equations: Application to Epidemic Outbreaks.” BMC Medical Research Methodology 21: 34. https://doi.org/10.1186/s12874-021-01226-9.Search in Google Scholar

Chowell, G., and K. Mizumoto. 2020. “The COVID-19 Pandemic in the USA: What Might We Expect?” The Lancet 395: 1093–4. https://doi.org/10.1016/s0140-6736(20)30743-1.Search in Google Scholar

Clerkin, K. J., J. A. Fried, J. Raikhelkar, G. Sayer, J. M. Griffin, A. Masoumi, S. S. Jain, D. Burkhoff, D. Kumarajah, L. Rabbani, A. Schwartz, and N. Uriel. 2020. “COVID-19 and Cardiovascular Disease.” Circulation 141 (20): 1648–55. https://doi.org/10.1161/circulationaha.120.046941.Search in Google Scholar

Cowling, B. J., Y. Zhou, D. K. M. Ip, G. M. Leung, and A. E. Aiello. 2010. “Face Masks to Prevent Transmission of Influenza Virus: A Systematic Review.” Epidemiology and Infection 138 (4): 449–56. https://doi.org/10.1017/S0950268809991658.Search in Google Scholar

Cramer, J. S. 2004. “The Early Origins of the Logit Model.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35 (4): 613–26. https://doi.org/10.1016/j.shpsc.2004.09.003.Search in Google Scholar

Deakin, J., M. Aitken, T. Robbins, and B. J. Sahakian. 2004. “Risk Taking during Decision-Making in Normal Volunteers Changes with Age.” Journal of the International Neuropsychological Society 10 (4): 590–8. https://doi.org/10.1017/s1355617704104104.Search in Google Scholar

Debecker, A., and T. Modis. 2021. “Poorly Known Aspects of Flattening the Curve of COVID-19.” Technological Forecasting and Social Change 163: 120432. https://doi.org/10.1016/j.techfore.2020.120432.Search in Google Scholar

Eikenberry, S., M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, and A. B. Gumel. 2020. “To Mask or Not to Mask, Modeling for the Potential for Face Mask Use by the General Public to Curtail the COVID-19 Pandemic.” Infectious Disease Modeling 5: 293–308. https://doi.org/10.1016/j.idm.2020.04.001.Search in Google Scholar

EpiForecasts. 2020. Global Summary. Also available at https://epiforecasts.io/covid/posts/global/.Search in Google Scholar

Ewing, T. E. 2020. Flu Masks Failed in 1918, But We Need Them Now. Also available at https://www.healthaffairs.org/do/10.1377/hblog20200508.769108/full/.Search in Google Scholar

Fowler, J. H., S. J. Hill, R. Levin, and N. Obradovich. 2020. The Effect of Stay-at-Home Orders on COVID-19 Cases and Fatalities in the United States. https://doi.org/10.1101/2020.04.13.20063628.10.1101/2020.04.13.20063628Search in Google Scholar

Gage, T. B., and C. J. Mode. 1993. “Some Laws of Mortality: How Do They Fit?” Human Biology 65 (3): 445–61.Search in Google Scholar

Gianfelice, P. R. L., R. S. Oyarzabal, A. Cunha Jr., J. M. V. Grzybowski, F. da Conceicao Batista, and E. E. N. Macau. 2022. “The Starting Dates of COVID-19 Multiple Waves.” Chaos 32: 031101, https://doi.org/10.1063/5.0079904.Search in Google Scholar

Holshue, M. L., C. DeBolt, S. Lindquist, H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L. Fox, A. Patel, S. I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M. A. Pallansch, W. C. Weldon, H. M. Biggs, T. M. Uyeki, S. Pillai, and Washington State 2019-nCOV Case Investigation Team. 2020. “Chas Bolt, Scott Lindquist, Kathy First Case of 2019 Novel Coronavirus in the United States.” North England Journal of Medicine 382 (10): 929–36. https://doi.org/10.1056/nejmoa2001191.Search in Google Scholar

Howard, J., A. Huang, and Z. Li. 2021. “An Evidence Review of Face Masks against COVID-19.” Proceedings of the National Academy of Sciences of the United States of America 118 (4): 564118. https://doi.org/10.1073/pnas.2014564118.Search in Google Scholar

Jacobs, P., and A. P. Ohinmaa. 2020. “The Enforcement of Statewide Mask Wearing Mandates to Prevent COVID-19 in the US: An Overview.” F1000Research 9: 1100, https://doi.org/10.12688/f1000research.25907.1.Search in Google Scholar

Jefferson, T., R. Foxlee, C. Del Mar, L. Dooley, E. Ferroni, B. Hewak, A. Prabhala, S. Nair, and A. Rivette. 2008. “Physical Intervention to Interrupt or Reduce the Spread of Respiratory Viruses: Systematic Review.” BMJ 336: 77. https://doi.org/10.1136/bmj.39393.510347.be.Search in Google Scholar

Kermack, W. O., and A. G. McKendrick. 1927. “Contributions to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society. Series A, Containing Papers of a Mathematical and Physical Character 115 (5): 700–21.10.1098/rspa.1927.0118Search in Google Scholar

Kmenta, J. 1997. Elements of Econometrics, 2nd ed., 652–68. Ann Arbor: The University of Michigan Press.10.3998/mpub.15701Search in Google Scholar

Kronbichler, A., D. Kresse, S. Yoon, K. Hwa Lee, M. Effenberger, and J. I. Shin. 2020. “Asymptomatic Patients as A Source of COVID-19 Infections: A Systematic Review and Meta-Analysis.” International Journal of Infectious Diseases 98: 180–6. https://doi.org/10.1016/j.ijid.2020.06.052.Search in Google Scholar

Lee, S. B., J. H. Oh, J. H. Park, S. P. Choi, and J. H. Wee. 2018. “Differences in Youngest-Old, Middle-Old, and Oldest-Old Patients Who Visit the Emergency Department.” Clinical and Experimental Emergency Medicine 5 (4): 249–55. https://doi.org/10.15441/ceem.17.261.Search in Google Scholar

Li, Z., S. Lin, J. Rui, Y. Bai, B. Deng, Q. Chen, Y. Zhu, L. Luo, S. Yu, W. Liu, S. Zhang, Y. Su, B. Zhao, H. Zhang, Y. Chiang, J. Liu, K. Luo, and T. Chen. 2022. “An Easy-To-Use Public Health-Driven Method (The Generalized Logistic Differential Equation Model) Accurately Simulated COVID-19 Epidemic in Wuhan and Correctly Determined the Early Warning Time.” Frontiers in Public Health 2022: 813860. https://doi.org/10.3389/fpubh.2022.813860.Search in Google Scholar

MacIntyre, C. R., S. Cauchemez, D. E. Dwyer, H. Seale, P. Cheung, G. Browne, M. Fasher, J. Wood, Z. Gao, R. Booy, and N. Ferguson. 2009. “Face Mask Use and Control of Respiratory Virus Transmission in Households.” Emerging Infectious Diseases 15 (2): 232–40. https://doi.org/10.3201/eid1502.081166.Search in Google Scholar

MacIntyre, C. R., Q. Wang, S. Cauchemez, H. Seale, E. D. Dwyer, P. Yang,W. Shi,Z. Gao,X. Pang,Y. Zhang,X. Wang,W. Duan,B. Rahman,N. Ferguson. 2011. “A Cluster Randomized Clinical Trial Comparing Fit-Tested and Non-fit-tested N95 Respirators to Medical Masks to Prevent Respiratory Virus Infection in Health Care Workers.” Influenza and Other Respiratory Viruses 5: 170–9. https://doi.org/10.1111/j.1750-2659.2011.00198.x.Search in Google Scholar

Markel, H., H. B. Lipman, J. A. Navarro, A. Sloan, J. R. Michalsen, A. M. Stern, and M. S. Cetron. 2007. “Nonpharmaceutical Interventions Implmented by US Cities During the 1918–1919 Influenza Pandemic.” JAMA 298 (6): 644–54.10.1001/jama.298.6.644Search in Google Scholar

Merrin, J. 2020. “Differences in Power-Law Growth over Time and Indicators of COVID-19 Pandemic Progression Worldwide.” Physical Biology 17: 06005. https://doi.org/10.1088/1478-3975/abb2db.Search in Google Scholar

Michas, F. 2020. Number of Staffed Beds in U.S. Hospitals by State as of May 2020. Also available at https://www.statista.com/statistics/710488/staffed-beds-in-us-hospitals-by-state/.Search in Google Scholar

Mizumoto, K., K. Kagaya, A. Zarebski, and G. Chowell. 2020. “Estimating the Asymptomatic Proportion of Coronavirus Disease 2019 (COVID-19) Cases on Board the Diamond Princess Cruise Ship, Yokohama, Japan, 2020.” Euro Surveillance 25 (10): 2000180. https://doi.org/10.2807/1560-7917.es.2020.25.10.2000180.Search in Google Scholar

Nakazawa, E., H. Ino, and A. Akabayashi. 2020. “Chronology of COVID-19 Cases on the Diamond Princess Cruise Ship and Ethical Considerations: A Report from Japan.” Disaster Medicine and Public Health Preparedness 14 (4): 506–13. https://doi.org/10.1017/dmp.2020.50.Search in Google Scholar

Ofner-Agostini, M., T. Willington, B. Henry, D. Low, L. C. McDonald, L. Berger, B. Mederski, SARS Investigative Team, and T. Wong. 2008. “Investigation of the Second Wave of Severe Acute Respiratory Syndrome in Toronto, Canada.” Canada Communicable Disease Report 34 (2): 1–11.Search in Google Scholar

Pelinovsky, E., A. Kurkin, O. Kurkina, M. Kokoulina, and A. Epifanova. 2020. “Logistic Equation and COVID-19.” Chaos, Solutions and Fractals 140 (2020): 110241.10.1016/j.chaos.2020.110241Search in Google Scholar

Powell, M., and D. Ansic. 1997. “Gender Differences in Risk Behavior in Financial Decision-Making: An Experimental Analysis.” Journal of Economic Psychology 18 (6): 605–28. https://doi.org/10.1016/s0167-4870(97)00026-3.Search in Google Scholar

Roalf, D. R., S. H. Mitchell, W. T. Harbaugh, and J. S. Janowsky. 2012. “Risk, Reward, and Economic Decision Making in Aging.” Journal of Geology, Series B 67B (3): 289–98. https://doi.org/10.1093/geronb/gbr099.Search in Google Scholar

Schwellenbach, N. 2020. The First 100 Days of the U.S Government’s COVID-19 Response. Also available at https://www.pogo.org/analysis/2020/05/the-first-100-days-of-the-u-s-governments-COVID-19-response/.Search in Google Scholar

Sonfield, M., R. Lussier, J. Corman, and M. Mckinney. 2001. “Gender Comparison in Strategic Decision-Making: An Empirical Analysis of the Entrepreneurial Strategy Matrix.” Journal of Small Business Management 39 (2): 165–73. https://doi.org/10.1111/1540-627x.00015.Search in Google Scholar

Syed, Q., W. Sopwith, M. Regan, and M. Bellis. 2003. “Behind the Mask, Journey through an Epidemic: Some Observations of Contrasting Public Health Responses to SARS.” Journal of Epidemiology & Community Health 57: 855–6. https://doi.org/10.1136/jech.57.11.855.Search in Google Scholar

Tindale, L. C., M. Coombe, J. E. Stockdale, E. S. Garlock, W. Y. V. Lau, M. Saraswat, L. Zhang, D. Chen, J. Wallinga, and C. Colijn. 2020. “Transmission Interval Estimates Suggest Pre-symptomatic Spread of COVID-19.” MedRxiv, eLife 9: e57149. https://doi.org/10.7554/eLife.57149.Search in Google Scholar

Vasconcelos, G. L., A. M. S. Macêdo, R. Ospina, F. A. G. Almeida, G. C. Duarte-Filho, A. A. Brum, and I. C. L. Souza. 2020. “Modelling Fatality Curves of COVID-19 and the Effectiveness of Intervention Strategies.” PeerJ 8: e9421. https://doi.org/10.7717/peerj.9421.Search in Google Scholar

Vasconcelos, G. L., A. A. Brum, F. A. G. Almeida, A. Macedo, G. C. Duarte-Filho, and R. Ospina. 2021a. “Standard and Anomalous Waves of COVID-19: A Multiple-Wave Growth Model for Epidemics.” Brazilian Journal of Physics 51: 1867–83. https://doi.org/10.1007/s13538-021-00996-3.Search in Google Scholar

Vasconcelos, G. L., A. M. S. Macêdo, G. C. Duarte-Filho, A. A. Brum, R. Ospina, and F. A. G. Almeida. 2021b. “Power Law Behavior in the Saturation Regime of Fatality Curves of the COVID-19 Pandemic.” Scientific Reports 11: 4619. https://doi.org/10.1038/s41598-021-84165-1.Search in Google Scholar

World Health Organization. 2013. Evolution of a Pandemic: A(H1N1) 2009, April 2009–August 2010, 2nd ed.Search in Google Scholar

Wu, K., D. Darcet, Q. Wang, and D. Sornette. 2020. “Generalized Logistic Growth Modeling of the COVID-19 Outbreak: Comparing the Dynamics in the 29 Provinces in China and in the Rest of the World.” Nonlinear Dynamics 101: 1561–81. https://doi.org/10.1007/s11071-020-05862-6.Search in Google Scholar

Yuan, J., L. Zhang, W. Xu, J. Shen, P. Zhang, and H. Ma. 2009. “Reported Changes in Health-Relate Behaviors in Chinese Urban Residents in Response to an Influenza Pandemic.” Epidemiology and Infection 137 (7): 988–93. https://doi.org/10.1017/s0950268809002726.Search in Google Scholar

Received: 2022-02-28
Revised: 2022-06-13
Accepted: 2022-07-12
Published Online: 2022-08-10

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apjri-2022-0007/html
Scroll to top button