Home Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films
Article
Licensed
Unlicensed Requires Authentication

Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films

  • Premysl Marsik ORCID logo EMAIL logo , Roberto de Andrés Prada , Andreana Daniil and Christian Bernhard ORCID logo
Published/Copyright: August 18, 2022
Become an author with De Gruyter Brill

Abstract

We performed infrared and time-domain terahertz spectroscopic ellipsometry measurements of thin films of the perovskite antiferromagnetic insulator SrMnO3 that were grown by pulsed laser deposition (PLD) on LaAlO3, SrLaGaO4, and LSAT substrates which yield an epitaxial strain ranging from −0.3 to 1.7%. Taking these thin films as a representative example, we discuss the strategies for analyzing the ellipsometry spectra and extracting the information about the thin film dielectric response that can be equally applied to a variety of oxide based thin films and heterostructures. In particular, for the room temperature spectra we show that the three infrared-active phonon modes of the cubic perovskite structure of SrMnO3 undergo the expected softening with increasing tensile strain. For the SrMnO3 film on SrLaGaO4, we find that the low-energy (TO1) phonon mode reveals anomalous temperature dependence in the vicinity of the Néel temperature of about 170 K that signifies a strong spin-phonon coupling. For the SrMnO3 film on LSAT, we identify some irreversible changes of the infrared ellipsometry spectra that occur as the sample is heated to elevated temperature up to 560 K. These changes of the ellipsometry spectra have been attributed to a partial oxygen loss of the SrMnO3 thin film since they can be reverted with a post annealing treatment under high oxygen pressure.


Corresponding author: Premysl Marsik, Department of Physics, University of Fribourg, Chemin du Musee 3, 1700, Fribourg, Switzerland, E-mail:

Acknowledgments

Edith Perret is acknowledged for setting up the furnace for the high-pressure annealing.

  1. Author contributions: P.M. planned the project, performed the ellipsometry experiments, and authored the manuscript. R.de A.P. grew and characterized the samples. A.D. performed the O2 annealing experiements and related x-ray and ellipsometry characterization. C.B. consulted and contributed to the manuscript.

  2. Research funding: This work was supported by SNF project No. 200020-172611.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures, Heidelberg, Springer, 2004.10.1007/b11964Search in Google Scholar

[2] M. Neshat and N. P. Armitage, “Developments in THz range ellipsometry,” J. Infrared, Millim. Terahertz Waves, vol. 34, p. 682, 2013. https://doi.org/10.1007/s10762-013-9984-4.Search in Google Scholar

[3] D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys., vol. 77, p. 721, 2005. https://doi.org/10.1103/revmodphys.77.721.Search in Google Scholar

[4] D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys., vol. 83, p. 471, 2011. https://doi.org/10.1103/revmodphys.83.471.Search in Google Scholar

[5] Y. Tokura, “Critical features of colossal magnetoresistive manganites,” Rep. Prog. Phys., vol. 69, p. 797, 2006. https://doi.org/10.1088/0034-4885/69/3/r06.Search in Google Scholar

[6] J. H. Lee, L. Fang, E. Vlahos, et al., “A strong ferroelectric ferromagnet created by means of spin–lattice coupling,” Nature, vol. 466, p. 954, 2010. https://doi.org/10.1038/nature09533.Search in Google Scholar

[7] J. Chakhalian, A. J. Millis, and J. Rondinelli, “Whither the oxide interface,” Nat. Mater., vol. 11, pp. 92–94, 2012. https://doi.org/10.1038/nmat3225.Search in Google Scholar PubMed

[8] J. M. Rondinelli and N. A. Spaldin, “Structure and properties of functional oxide thin films: insights from electronic-structure calculations,” Adv. Mater., vol. 23, p. 3363, 2011. https://doi.org/10.1002/adma.201101152.Search in Google Scholar PubMed

[9] O. Chmaissem, B. Dabrowski, S. Kolesnik, et al.., “Relationship between structural parameters and the Néel temperature in Sr1-xCaxMnO3 (0≤x≤1) and Sr1-yBayMnO3 (y≤0.2),” Phys. Rev. B, vol. 64, 2001, Art. no. 134412.Search in Google Scholar

[10] H. Sakai, J. Fujioka, T. Fukuda. et al.., “Displacement-type ferroelectricity with off-center magnetic ions in perovskite Sr1-xBaxMnO3,” Phys. Rev. Lett., vol. 107, 2011, Art. no. 137601.10.1103/PhysRevLett.107.137601Search in Google Scholar PubMed

[11] H. Sakai, J. Fujioka, T. Fukuda, et al.., “Soft phonon mode coupled with antiferromagnetic order in incipient-ferroelectric Mott insulators Sr1−xBaxMnO3,” Phys. Rev. B, vol. 86, 2012, Art. no. 104407.10.1103/PhysRevB.86.104407Search in Google Scholar

[12] S. Kamba, V. Goian, V. Skoromets, et al.., “Strong spin-phonon coupling in infrared and Raman spectra of SrMnO3,” Phys. Rev. B, vol. 89, 2014, Art. no. 064308.10.1103/PhysRevB.89.064308Search in Google Scholar

[13] S. Bhattacharjee, E. Bousquet, and P. Ghosez, “Engineering multiferroism in CaMnO3,” Phys. Rev. Lett., vol. 102, 2009, Art. no. 117602.10.1103/PhysRevLett.102.117602Search in Google Scholar PubMed

[14] J. H. Lee and K. M. Rabe, “Epitaxial-Strain-Induced Multiferroicity in SrMnO3 from First Principles,” Phys. Rev. Lett., vol. 104, 2010, Art. no. 207204.10.1103/PhysRevLett.104.207204Search in Google Scholar PubMed

[15] J. Hong, A. Stroppa, J. Iniguez, S. Picozzi, and D. Vanderbilt, “Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study,” Phys. Rev. B, vol. 85, 2012, Art. no. 054417.10.1103/PhysRevB.85.054417Search in Google Scholar

[16] V. Goian, S. Kamba, F. Borodavka, D. Nuzhnyy, M. Savinov, and A. A. Belik, “The manifestation of spin-phonon coupling in CaMnO3,” J. Appl. Phys., vol. 117, 2015, Art. no. 164103.10.1063/1.4918659Search in Google Scholar

[17] A. Edström and C. Ederer, “First-principles-based strain and temperature-dependent ferroic phase diagram of SrMnO3,” Phys. Rev. Mater., vol. 2, 2018, Art. no. 104409.10.1103/PhysRevMaterials.2.104409Search in Google Scholar

[18] T. Günter, E. Bousquet, A. David, et al.., “Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films,” Phys. Rev. B, vol. 85, 2012, Art. no. 214120.10.1103/PhysRevB.85.214120Search in Google Scholar

[19] C. Becher, L. Maurel, U. Aschauer, et al.., “Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films,” Nat. Nanotechnol., vol. 10, pp. 661–666, 2015.10.1038/nnano.2015.108Search in Google Scholar PubMed

[20] J. W. Guo, P.S. Wang, Y. Yuan, et al.., “Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films,” Phys. Rev. B, vol. 97, 2018, Art. no. 235135.10.1103/PhysRevB.97.235135Search in Google Scholar

[21] F. Wang, Y. Q. Zhang, Y. Bai, et al.., “Oxygen vacancy formation, crystal structures, and magnetic properties of three SrMnO3−δfilms,” Appl. Phys. Lett., vol. 109, 2016, Art. no. 052403.10.1063/1.4960463Search in Google Scholar

[22] P. Agrawal, J. Guo, P. Yu, et al.., “Strain-driven oxygen deficiency in multiferroic SrMnO3 thin films,” Phys. Rev. B, vol. 94, 2016, Art. no. 104101.10.1103/PhysRevB.94.104101Search in Google Scholar

[23] L. Maurel, N. Marcano, E. Langenberg, et al.., “Engineering the magnetic order in epitaxially strained Sr1−xBaxMnO3 perovskite thin films,” Apl. Mater., vol. 7, 2019, Art. no. 041117.10.1063/1.5090824Search in Google Scholar

[24] V. Goian, E. Langenberg, N. Marcano et al.., “Spin-phonon coupling in epitaxial Sr0.6Ba0.4MnO3 thin films,” Phys. Rev. B, vol. 95, 2017, Art. no. 075126.10.1103/PhysRevB.95.075126Search in Google Scholar

[25] J. Petzelt and S. Kamba, “Far infrared and terahertz spectroscopy of ferroelectric soft modes in thin films: A review,” Ferroelectrics, vol. 503, pp. 19–44, 2016. https://doi.org/10.1080/00150193.2016.1216702.Search in Google Scholar

[26] P. Marsik, K. Sen, J. Khmaladze, M. Yazdi-Rizi, B. P. P. Mallett, and C. Bernhard, “Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films,” Appl. Phys. Lett., vol. 108, 2016, Art. no. 052901.10.1063/1.4940976Search in Google Scholar

[27] K. Sen, P. Marsik, S. Das, et al.., “Superconductivity and charge-carrier localization in ultrathin La1.85Sr0.15CuO4/La2CuO4 bilayers,” Phys. Rev. B, vol. 95, 2017, Art. no. 214506.10.1103/PhysRevB.95.214506Search in Google Scholar

[28] B. P. P. Mallett, J. Khmaladze, P. Marsik, et al.., “Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer,” Phys. Rev. B, vol. 94, no. R, 2016, Art. no. 180503.10.1103/PhysRevB.94.180503Search in Google Scholar

[29] C. Bernhard, J. Humlicek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source - the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films, vol. 455–456, pp. 143–149, 2004. https://doi.org/10.1016/j.tsf.2004.01.002.Search in Google Scholar

[30] C. M. Morris, R. Valdes Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express, vol. 20, no. 11, 2012, Art. no. 12303.10.1364/SENSORS.2012.SW4C.2Search in Google Scholar

[31] M. Neshat and N. P. Armitage, “Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration,” Opt. Express, vol. 20, no. 27, 2012, Art. no. 29063.10.1364/OE.20.029063Search in Google Scholar PubMed

[32] L. Maurel, N. Marcano, T. Prokscha, et al.., “Nature of antiferromagnetic order in epitaxially strained multiferroic SrMnO3 thin films,” Phys. Rev. B, vol. 92, 2015, Art. no. 024419.10.1103/PhysRevB.92.024419Search in Google Scholar

[33] J. Humlicek, “Polarized light and ellipsometry,” in Handbook of Ellipsometry, H. Tompkins and E. Irene, Eds., New York, William Andrew Publishing, 2005, pp. 80–90.Search in Google Scholar

[34] D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev., vol. 130, p. 2193, 1963. https://doi.org/10.1103/physrev.130.2193.Search in Google Scholar

[35] D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films, vol. 89, pp. 249–262, 1982. https://doi.org/10.1016/0040-6090(82)90590-9.Search in Google Scholar

[36] P. Fris, D. Munzar, O. Caha, and A. Dubroka, “Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry,” Phys. Rev. B, vol. 97, 2018, Art. no. 045137.10.1103/PhysRevB.97.045137Search in Google Scholar

[37] D. W. Berreman, “Optics in stratified and anisotropic media: 4X4-Matrix formulation,” J. Opt. Soc. Am., vol. 62, p. 502, 1972. https://doi.org/10.1364/josa.62.000502.Search in Google Scholar

[38] M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B, vol. 53, p. 8, 1996. https://doi.org/10.1103/physrevb.53.4265.Search in Google Scholar PubMed

[39] A. Dubroka, M. Rössle, K.W. Kim, et al.., “Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett., vol. 104, 2010, Art no. 156807.10.1103/PhysRevLett.104.156807Search in Google Scholar PubMed

[40] Z. M. Zhang, B. I. Choi, M. I. Flik, and A. C. Anderson, “Infrared refractive indices of LaAlO3, LaGaO3, and NdGaO3,” J. Opt. Soc. Am. B, vol. 11, p. 11, 1994. https://doi.org/10.1364/josab.11.002252.Search in Google Scholar

[41] J. Humlicek and C. Bernhard, “Diffraction effects in infrared ellipsometry of conducting samples,” Thin Solid Films, vol. 455–456, pp. 177–182, 2004. https://doi.org/10.1016/j.tsf.2004.01.004.Search in Google Scholar

[42] J. H. W. G. den Boer, G. M. W. Kroesen, M. Haverlag, and F. J. de Hoog, “Spectroscopic IR ellipsometry with imperfect components,” Thin Solid Films, vol. 234, pp. 323–326, 1993. https://doi.org/10.1016/0040-6090(93)90278-w.Search in Google Scholar

[43] S. Kamba, E. Buixaderas, and A. Pajaczkowska, “Polarized infrared reflectivity spectra of SrLaAlO4 and SrLaGaO4 single crystals,” Phys. Status Solidi, vol. 168, p. 317, 1998. https://doi.org/10.1002/(sici)1521-396x(199807)168:1<317::aid-pssa317>3.0.co;2-p.10.1002/(SICI)1521-396X(199807)168:1<317::AID-PSSA317>3.0.CO;2-PSearch in Google Scholar

[44] J. Humlicek, R. Henn, and M. Cardona, “Infrared vibrations in LaSrGaO4 and LaSrAlO4,” Phys. Rev. B, vol. 61, p. 21, 2000. https://doi.org/10.1103/physrevb.61.14554.Search in Google Scholar

[45] T. N. Nunley, T. I. Willett-Gies, J. A. Cooke, et al.., “Optical constants, band gap, and infrared-active phonons of (LaAlO3)0.3(Sr2AlTaO6)0.35 (LSAT) from spectroscopic ellipsometry,” J. Vac. Sci. Technol., A, vol. 34, 2016, Art. no. 051507.10.1116/1.4960356Search in Google Scholar

Received: 2022-03-17
Accepted: 2022-07-07
Published Online: 2022-08-18
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2022-0009/pdf
Scroll to top button