Home M6 formalism – generalization of the laser beam quality factor M2 to the 3D domain
Article
Licensed
Unlicensed Requires Authentication

M6 formalism – generalization of the laser beam quality factor M2 to the 3D domain

  • Alexander Brodsky ORCID logo and Natan Kaplan ORCID logo EMAIL logo
Published/Copyright: May 16, 2020
Become an author with De Gruyter Brill

Abstract

Here we define a theoretical basis for the generalization of the beam quality factor M2 to three-dimensional (3D) space, which we call M6 formalism. The formalism is established through the use of examples of multifocal and Axicon optical systems to illustrate discrete and continuous axial beam shaping, respectively. For the continuous case, we expand the definition of the Rayleigh range to incorporate a quality factor having both axial and transverse components Madd2 and M2. Using geometrical ray tracing simulations, a proportion factor C is found to empirically describe the axial quality factor Mz2 of an optical setup including an Axicon and a paraxial focusing lens with a Gaussian single mode input beam. Using our M6 formalism depth of focus (DOF) ranges are calculated for higher M2 beams, and are shown to be in good agreement with the simulated DOF range, demonstrating the usefulness of the M6 formalism for the design of real optical systems.

6 Appendix

6.1 Generalized DOF formula

The generalized DOF formula is derived from the well-known Gaussian waist size equation:

(8)ωz=ω01+(ZZR)2

where ωz, and ω0 are beam sizes in distance Z from focal plane.

We define p factor as the intensity drop from its maximum in the focal plane, and it is proportional to the beam squared beam size (area).

(9)p=1ω02ωz2,ω02ωz2=1p

Expressing Z from (8)

(10)Z2=ZR2(ωz2ω021)

Substituting p in (9)–(10)

(11)Z2=zR2(11p1)

Z is only half DOF range Δp, and it is proportional to refractive index n.

Using (3) the final expression for DOF is:

(12)Δp=nMadd2+M22ZR011p1

References

[1] L. Gao, L. Shao, B.-C. Chen and E. Betzig, Nat. Protoc. 9, 1083 (2014).10.1038/nprot.2014.087Search in Google Scholar

[2] F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy and A. Rohrbach, Opt. Express 21, 13824–13839 (2013).10.1364/OE.21.013824Search in Google Scholar

[3] J. Arlt, V. Garcés-Chávez, W. Sibbett and K. Dholakia, Opt. Commun. 197, 239–245 (2001).10.1016/S0030-4018(01)01479-1Search in Google Scholar

[4] Y. Zhang, X. Tang, Y. Zhang, W. Su, Z. Liu, et al., Opt. Lett. 43, 2784–2786 (2018).10.1364/OL.43.002784Search in Google Scholar

[5] B. B. Collier, S. Awasthi, D. K. Lieu and J. W. Chan, Sci. Rep. 5, 10751 (2015).10.1038/srep10751Search in Google Scholar

[6] P. Zhang, P. M. Goodwin and J. H. Werner, Opt. Express 22, 12398–12409 (2014).10.1364/OE.22.012398Search in Google Scholar

[7] K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, et al., Opt. Express 25, 33271–33282 (2017).10.1364/OE.25.033271Search in Google Scholar

[8] R. Stoian, M. Bhuyan, G. Zhang, G. Cheng, R. Meyer, et al., Adv. Opt. Technol. 7, 165–174 (2018).10.1515/aot-2018-0009Search in Google Scholar

[9] D. Flamm, D. G. Grossmann, M. Jenne, F. Zimmermann, J. Kleiner, et al., in ‘Laser Resonators, Microresonators, and Beam Control XXI (Vol. 10904, p. 109041G)’ (International Society for Optics and Photonics, 2019).Search in Google Scholar

[10] A. E. Siegman, Diode Pumped Solid State Lasers: Applications and Issues (Optical Society of America, 1998).Search in Google Scholar

[11] J. Alda, Encyclopedia Opt. Eng. 2013, 999–1013 (2003).Search in Google Scholar

[12] S. Saghafi, C. J. R. Sheppard, Opt. Commun. 153, 207–210 (1998).10.1016/S0030-4018(98)00256-9Search in Google Scholar

[13] R. Paschotta, Beam Quality Limit for Multimode Fibers. in the RP Photonics Encyclopedia (accessed on 2019-06-09).Search in Google Scholar

[14] N. Davidson and B. Nandor, Prog. Opt. 45, 1–52 (2003).10.1016/S0079-6638(03)80003-3Search in Google Scholar

[15] J. Durnin, J. Miceli Jr and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).10.1103/PhysRevLett.58.1499Search in Google Scholar

[16] D. McGloin and K. Dholakia, Physics 46, 15–28 (2005).10.1080/0010751042000275259Search in Google Scholar

[17] V. Jarutis, R. Paškauskas and A. Stabinis, Opt. Commun. 184, 105–112 (2000).10.1016/S0030-4018(00)00961-5Search in Google Scholar

[18] R. Borghi and M. Santarsiero, Opt. Lett. 22, 262–264 (1997).10.1364/OL.22.000262Search in Google Scholar

[19] R. M. Herman and T. A. Wiggins, Appl. Opt. 37, 3398–3400 (1998).10.1364/AO.37.003398Search in Google Scholar PubMed

[20] R. P. Chen, et al., Opt. Laser Technol. 44, 2015–2019 (2012).10.1016/j.optlastec.2012.03.038Search in Google Scholar

[21] K. S. Lee and P. R. Jannick, Opt. Lett. 33, 1696–1698 (2008).10.1364/OL.33.001696Search in Google Scholar

[22] R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann and T. Lasser, Opt. Lett. 31, 2450–2452 (2006).10.1364/OL.31.002450Search in Google Scholar

[23] Y. G. Soskind, Field Guide to Diffractive Optics (SPIE, Bellingham, WA, 2011).10.1117/3.895041Search in Google Scholar

[24] D. C. O’Shea, T. J. Suleski, A. D. Kathman and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (Spie Press, Bellingham, WA, 2004) Vol. 62.10.1117/3.527861Search in Google Scholar

[25] K. A. Ingold, et al., CLEO: Applications and Technology (Optical Society of America, 2018).Search in Google Scholar

[26] N. Trela, Spatial and Spectral Brightness Improvement of Single-Mode Laser Diode Arrays. Diss (Heriot-Watt University, 2012).Search in Google Scholar

[27] P. Loosen and K. Alexander, Incoherent Beam Superposition and Stacking. in ‘High Power Diode Lasers’ (Springer, New York, NY, 2007) pp. 121–179.10.1007/978-0-387-34729-5_4Search in Google Scholar

[28] A. Brodsky and N. Kaplan, Method for Laser Source Definition in ZEMAX. https://www.holoor.co.il/wp-content/uploads/2019/12/Method-For-Laser-Source-Definition-in-ZEMAX-To-Enable-Realistic-Modelling-With-Raytracing.pdf?x52531.Search in Google Scholar

[29] D. M. Hasenauer and D. S. Bryan, ‘Optical Systems Design 2015: Optical Design and Engineering VI. Vol. 9626’ (International Society for Optics and Photonics, 2015).Search in Google Scholar

[30] R. Paschotta, Optical Heterodyne Detection. in ‘The RP Photonics Encyclopedia’ (accessed on 2019-04-27).Search in Google Scholar

[31] S. R. Lee, J. Kim, S. Lee, Y. Jung, J. K. Kim, et al., Opt. Express 18, 25299–25305 (2010).10.1364/OE.18.025299Search in Google Scholar PubMed

[32] H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira and M. S. Dahlem, IEEE Photonics J. 9, 1–9 (2017).10.1109/JPHOT.2017.2710189Search in Google Scholar

[33] P. Markov, G. V. Jason and M. W. Sharon, Opt. Express 20, 14705–14713 (2012).10.1364/OE.20.014705Search in Google Scholar PubMed

[34] H. Kuwahara, M. Sasaki and N. Tokoyo, Appl. Opt. 19, 2578–2583 (1980).10.1364/AO.19.002578Search in Google Scholar PubMed

[35] F. Wu, C. Yunbin and G. Dongdong, Appl. Opt. 46, 4943–4947 (2007).10.1364/AO.46.004943Search in Google Scholar

[36] A. Khilo, G. K. N. Eugeny and A. R. Anatol, JOSA A 18, 1986–1992 (2001).10.1364/JOSAA.18.001986Search in Google Scholar

[37] V. Pasiskevicius, H. Karlsson, J. A. Tellefsen, F. Laurell, R. Butkus, et al., Opt. Lett. 25, 969–971 (2000).10.1364/OL.25.000969Search in Google Scholar

Received: 2020-03-05
Accepted: 2020-04-06
Published Online: 2020-05-16
Published in Print: 2020-09-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0007/pdf
Scroll to top button