Home Native oxide layer effect on polarization cancellation for mirrors over the visible to near-infrared region
Article
Licensed
Unlicensed Requires Authentication

Native oxide layer effect on polarization cancellation for mirrors over the visible to near-infrared region

  • Suchandra Banerjee EMAIL logo , Russell Chipman , Nathan Hagen and Yukitoshi Otani
Published/Copyright: April 17, 2020
Become an author with De Gruyter Brill

Abstract

The presence of native oxide layers on aluminum mirrors can be a nuisance for precision optical design. As the native oxide thickness varies from mirror to mirror, its effect cannot be completely canceled even in the conventional crossed fold mirror geometry. We show how this effect arises and how it can be mitigated, and provide an experimental demonstration in which the residual linear retardance and linear diattenuation are reduced to <0.14° and <0.001, respectively, over the visible and near-infra-red spectral range.

Acknowledgment

S. Banerjee is grateful to the Ministry of Education Culture, Sports, Science and Technology—Government of Japan (MEXT) for a supporting scholarship.

References

[1] J. B. Breckinridge, W. S. T. Lam and R. A. Chipman, PSAP 127, 445–468 (2015).10.1086/681280Search in Google Scholar

[2] J. Zhang, X. Zhang, S. Tan and X. Xie, Curr. Opt. Photon 1, 364–371 (2017).Search in Google Scholar

[3] J. Shamir and R. A. Chipman, J. Mod. Opt. 38, 327–347 (1991).10.1080/09500349114550351Search in Google Scholar

[4] N. Clark and J. B. Breckenridge, Proc. SPIE 8146 (2011).Search in Google Scholar

[5] A. B. Mahler, P. K. Smith and R. A. Chipman, Proc. SPIE 6682 (2007).Search in Google Scholar

[6] W. S. T. Lam and R. Chipman, Appl. Opt. 54, 3236–3245 (2015).10.1364/AO.54.003236Search in Google Scholar PubMed

[7] P. W. Maymon and R. A. Chipman. Opt. Photonics 1746, 148–156 (1992).Search in Google Scholar

[8] Y. Yang and C. Yan, Appl. Opt. 55, 1343–1350 (2016).10.1364/AO.55.001343Search in Google Scholar PubMed

[9] D. M. Harrington, S. R. Sueoka and A. J. White, J. Astron. Telesc. Instrum. Syst. 3 (2017).10.1117/1.JATIS.3.4.048001Search in Google Scholar

[10] G. van Harten, F. Snik and C. U. Keller, Publ. Astron. Soc. Pac 121, 377–383 (2009).10.1086/599043Search in Google Scholar

[11] G. Hass and N. W. Scott, J. Phys. Radium 11, 394–402 (1950).10.1051/jphysrad:01950001107039400Search in Google Scholar

[12] S. Banerjee, R. Chipman, N. Hagen and Y. Otani, Opt. Commun. 454, 124456 (2020).10.1016/j.optcom.2019.124456Search in Google Scholar

[13] H. Malitson and M. J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972).Search in Google Scholar

[14] G. Yun, S. C. McClain and R. A. Chipman, Appl. Opt. 50, 2866–2874 (2011).10.1364/AO.50.002866Search in Google Scholar PubMed

[15] R. M. A. Azzam, Opt. Lett. 2, 148–150 (1978).10.1364/OL.2.000148Search in Google Scholar

[16] D. H. Goldstein, Appl. Opt. 31, 6676–6683, (1992).10.1364/AO.31.006676Search in Google Scholar PubMed

[17] S. Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13, 1106–1113 (1996).10.1364/JOSAA.13.001106Search in Google Scholar

[18] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, et al., ACS Photonics 2, 326–333 (2015).10.1021/ph5004237Search in Google Scholar PubMed PubMed Central

Received: 2020-01-22
Accepted: 2020-03-10
Published Online: 2020-04-17
Published in Print: 2020-09-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0004/html
Scroll to top button