Home Advances in the design of optical see-through displays
Article
Licensed
Unlicensed Requires Authentication

Advances in the design of optical see-through displays

  • Yao Zhou , Jufan Zhang and Fengzhou Fang EMAIL logo
Published/Copyright: June 17, 2020
Become an author with De Gruyter Brill

Abstract

Driven by greatly increased applications, the optical see-through displays have been developing rapidly in recent decades. As a result, some innovative technologies have emerged toward making the display more compact and lighter with better performance. This paper serves as a systematical review on the advances in developing optical see-through displays, including the physical principles, optical configurations, performance parameters and manufacturing processes. The design principles, current challenges, possible solutions and future potential applications are also discussed in the paper.

Acknowledgments

This work was supported by Science Foundation Ireland (No. 15/RP/B3208) and the ‘111’ Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (No. B07014).

References

[1] D. Cheng, Y. Wang, H. Hua and M. Talha, Appl. Opt. 48, 2655–2668 (2009).10.1364/AO.48.002655Search in Google Scholar

[2] G. Evans, J. Miller, M. I. Pena, A. MacAllister and E. Winer, in ‘Degraded Environments: Sensing, Processing, and Display 2017’, (International Society for Optics and Photonics, Bellingham, WA, USA, 2017) 10197, p. 101970V.Search in Google Scholar

[3] A. Frommer, SID Symposium Digest of Technical Papers, 48, 134–135 (2017).10.1002/sdtp.11589Search in Google Scholar

[4] J. Wang, F. Z. Fang, G. Yan and Y. Guo. Nanomanufacturing Metrology, 2, 177–185 (2019).10.1007/s41871-019-00042-6Search in Google Scholar

[5] F. Z. Fang, F. Xu and M. Lai, Int. J. Adv. Manuf. Tech. 80, 591–598 (2015).10.1007/s00170-015-7032-3Search in Google Scholar

[6] J. P. Rolland, R. L. Holloway and H. Fuchs, in ‘Telemanipulator and Telepresence Technologies’, (International Society for Optics and Photonics, Bellingham, WA, USA, 1995) 2351, pp. 293–308.10.1117/12.197322Search in Google Scholar

[7] C. Curran. Breakthroughs in optics that are reshaping augmented reality. Available at: http://usblogs.pwc.com/emerging-technology/breakthroughs-in-optics-that-are-reshaping-augmented-reality/ (2016).Search in Google Scholar

[8] M. -U. Erdenebat, Y. -T. Lim, K. -C. Kwon, N. Darkhanbaatar and N. Kim, in ‘State of the Art Virtual Reality and Augmented Reality Knowhow’, (IntechOpen, Rijeka, Croatia, 2018).Search in Google Scholar

[9] S. J. Vaughan-Nichols, Computer, 42, 19–22 (2009).10.1109/MC.2009.380Search in Google Scholar

[10] J. E. Melzer and C. Spitzer, Digital Avionics Handbook (2001).Search in Google Scholar

[11] Meeting the optical design challenges of mixed reality. Available at: https://www.electrooptics.com/analysis-opinion/meeting-optical-design-challenges-mixed-reality (2019).Search in Google Scholar

[12] K. Akşit, W. Lopes, J. Kim, P. Shirley and D. Luebke, ACM T. Graphic. 36, 189 (2017).10.1145/3130800.3130892Search in Google Scholar

[13] A. Maimone, A. Georgiou and J. S. Kollin, ACM T. Graphic. 36, 85 (2017).10.1145/3072959.3073624Search in Google Scholar

[14] A. Bauer and J. P. Rolland, Opt. Express 22, 13155–13163 (2014).10.1364/OE.22.013155Search in Google Scholar PubMed

[15] D. Cheng, Y. Wang, C. Xu, W. Song and G. Jin, Opt. Express, 22, 20705–20719 (2014).10.1364/OE.22.020705Search in Google Scholar PubMed

[16] H. Benko, E. Ofek, F. Zheng and A. D. Wilson, in ‘Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology’, (ACM, New York, NY, USA, 2015) pp. 129–135.10.1145/2807442.2807493Search in Google Scholar

[17] D. Lanman and D. Luebke, ACM T. Graphic. 32, 220 (2013).10.1145/2508363.2508366Search in Google Scholar

[18] H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, et al., Opt. Eng. 52, 110901 (2013).10.1117/1.OE.52.11.110901Search in Google Scholar

[19] A. Pratt, ‘Weapon,’ USl183492 A16-May-1916 (1916).Search in Google Scholar

[20] I. E. Sutherland, in ‘Proceedings of the December 9-11, 1968, fall joint computer conference, part I’, (ACM, New York, NY, USA, 1968) pp. 757–764.Search in Google Scholar

[21] N. George and G. Morris, in ‘Current Trends in Optics’, (1981), p. 80.Search in Google Scholar

[22] Q. -L. Zhao, Z. -Q. Wang and T. -G. Liu, Optik, 118, 29–33 (2007).10.1016/j.ijleo.2006.02.001Search in Google Scholar

[23] P. Gilboa and S. Abraham, Displays, 15, 106–109 (1994).10.1016/0141-9382(94)90064-7Search in Google Scholar

[24] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani and M. Ivkovic, Multimed Tools Appl 51, 341–377 (2011).10.1007/s11042-010-0660-6Search in Google Scholar

[25] H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, et al., in ‘Stereoscopic Displays and Virtual Reality Systems III, (International Society for Optics and Photonics, Bellingham, WA, USA, 1996) 2653 pp. 234–243.10.1117/12.237443Search in Google Scholar

[26] T. Ando and M. Okamoto, Three-Dimensional Television, Video and Display Technologies, 3293, 183–189 (1998).Search in Google Scholar

[27] J. Horwitz. Magic Leap One’s field of view leak signals another AR disappointment. Available at: https://venturebeat.com/2018/07/31/magic-leap-ones-field-of-view-leak-signals-another-ar-disappointment/ (2018).Search in Google Scholar

[28] F. Liu. From off-axis to waveguide technology: Explain the past and the future of AR display. Available at: https://www.leiphone.com/news/201703/M65F9oVoURab2qE9.html (2017).Search in Google Scholar

[29] Microsoft. Hololens. Available at: https://www.microsoft.com/en-us/hololens.Search in Google Scholar

[30] Lumus. Waveguide. Available at: https://lumusvision.com/technology/.Search in Google Scholar

[31] L. Thibos, A. Bradley, D. Still, X. Zhang and P. Howarth, Vision Res. 30, 33–49 (1990).10.1016/0042-6989(90)90126-6Search in Google Scholar

[32] K. Huang, F. Qin, H. Liu, H. Ye, C. -W. Qiu, et al., Adv. Mater. 30, 1704556 (2018).10.1002/adma.201704556Search in Google Scholar PubMed

[33] H. Urey, Appl. Opt. 40, 5840–5851 (2001).10.1364/AO.40.005840Search in Google Scholar PubMed

[34] WaveOptics. Augmented reality’s key optical component. Available at: https://enhancedworld.com/ (2019)Search in Google Scholar

[35] Kore. Display technologies for Augmented and Virtual Reality. Available at: https://medium.com/inborn-experience/isplay-technologies-for-augmented-and-virtual-reality-82feca4e909f (2018).Search in Google Scholar

[36] G. Karl, ‘Near-Eye Bird Bath Optics Pros and Cons – And IMMY’s Different Approach,’ ed, March 3, 2017. Available at: https://www.kguttag.com/2017/03/03/near-eye-bird-bath-optics-pros-and-cons-and-immys-different-approach/.Search in Google Scholar

[37] A. Chandra. Working Principle of Google Glass [Infographic]. Available at: http://www.techpuffs.com/38503/working-principle-of-google-glass-infographic (2013).Search in Google Scholar

[38] Polarized Beam Splitter. Available at: https://www.meadowlark.com/wire-grid-polarizing-beam-splitter-p-76?mid=6.Search in Google Scholar

[39] F. Z. Fang, X. Zhang, A. Weckenmann, G. Zhang and C. Evans, CIRP Ann. Manuf. Techn. 62, 823–846 (2013).10.1016/j.cirp.2013.05.003Search in Google Scholar

[40] S. Chen, C. F. Cheung, F. Zhang and M. Liu, Nanomanufacturing Metrology, 2, 215–224 (2019).10.1007/s41871-019-00048-0Search in Google Scholar

[41] F. Z. Fang, N. Zhang and X. Zhang, Adv. Opt. Technol. 5, 303–324 (2016).10.1515/aot-2016-0033Search in Google Scholar

[42] K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, et al., in SID Symposium Digest of Technical Papers, 48, 954–957 (2017).10.1002/sdtp.11805Search in Google Scholar

[43] Y. Zhang and F. Z. Fang, Precis. Eng. 60, 482–496 (2019).10.1016/j.precisioneng.2019.09.009Search in Google Scholar

[44] F. Z. Fang, Y. Cheng and X. Zhang, Adv. Opt. Technol. 2, 445–453 (2013).10.1515/aot-2013-0029Search in Google Scholar

[45] T. Blalock, K. Medicus and D. G. Nelson, in ‘Spie Optical Engineering + Applications’, 2015.Search in Google Scholar

[46] G. Forbes, Opt. Express, 18, 13851–13862 (2010).10.1364/OE.18.013851Search in Google Scholar PubMed

[47] I. Kaya, K. P. Thompson and J. P. Rolland, Opt. Express, 19, 26962–26974 (2011).10.1364/OE.19.026962Search in Google Scholar PubMed

[48] G. Forbes, Opt. Express, 20, 2483–2499 (2012).10.1364/OE.20.002483Search in Google Scholar PubMed

[49] I. Kaya, K. P. Thompson and J. P. Rolland, Opt. Express, 20, 22683–22691 (2012).10.1364/OE.20.022683Search in Google Scholar PubMed

[50] I. Kaya and J. P. Rolland, Adv. Opt. Technol. 2, 81–88 (2013).10.1515/aot-2012-0075Search in Google Scholar

[51] H. Hong and J. Bahram, Opt. Express, 22, 13484–13491 (2014).10.1364/OE.22.013484Search in Google Scholar PubMed

[52] H. Hong and C. Gao, Proceedings of SPIE, 8288, 46 (2012).Search in Google Scholar

[53] H. Hong, H. Xinda and G. Chunyu, Opt. Express, 21, 30993 (2013).10.1364/OE.21.030993Search in Google Scholar PubMed

[54] H. Matsukuma, R. Ishizuka, M. Furuta, X. Li, Y. Shimizu, et al., Nanomanufacturing Metrology 2, 111–123 (2019).10.1007/s41871-019-00039-1Search in Google Scholar

[55] K. P. Thompson, P. Benitez and J. P. Rolland, Optic. Photon. News, 23, 32–37, (2012).10.1364/OPN.23.9.000032Search in Google Scholar

[56] G. Karl. Disney-Lenovo AR Headset – (Part 1 Optics). Available at: https://www.kguttag.com/2017/07/18/disney-lenovo-ar-headset-part-1/ (2017).Search in Google Scholar

[57] F. Z. Fang, X. Zhang, W. Gao, Y. Guo, G. Byrne, et al., CIRP Ann. Manuf. Techn. 66, 683–705 (2017).10.1016/j.cirp.2017.05.004Search in Google Scholar

[58] F. Z. Fang, Y. Chen, X. Zhang, X. Hu and G. Zhang, CIRP Ann. Manuf. Techn. 60, 527–530 (2011).10.1016/j.cirp.2011.03.057Search in Google Scholar

[59] A. W. Snyder and J. Love, Optical waveguide theory. Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012.Search in Google Scholar

[60] N. Marcuvitz, Waveguide handbook (no. 21). McGraw Hill, New York, 1951.Search in Google Scholar

[61] E. Snitzer, J. Opt. Soc. Am. 51, 5, 491–498 (1961).10.1364/JOSA.51.000491Search in Google Scholar

[62] G. Karl, ‘Magic Leap Review Part 1 – The Terrible View Through Diffraction Gratings,’ ed, September 26, 2018. Available at: https://www.kguttag.com/2018/09/26/magic-leap-review-part-1-the-terrible-view-through-diffraction-gratings/.Search in Google Scholar

[63] G. Karl. Magic Leap Review Part 2 – Image Issues. Available at: https://www.kguttag.com/2018/10/01/magic-leap-review-part-2-image-issues/ (2018).Search in Google Scholar

[64] P. Äyräs, P. Saarikko and T. Levola, J. Soc. Inf. Display, 17, 659–664 (2009).10.1889/JSID17.8.659Search in Google Scholar

[65] I. Vishik. What is a diffraction grating? Available at: https://www.quora.com/What-is-a-diffraction-grating (2014).Search in Google Scholar

[66] J. M. Miller, in ‘Practical Holography X’, 2652, 182–187 (1996): International Society for Optics and Photonics, Bellingham, WA, USA.10.1117/12.236059Search in Google Scholar

[67] N. De Beaucoudrey, J. M. Miller, P. H. Chavel and J. P. Turunen, in ‘Specification, Production, and Testing of Optical Components and Systems’, (International Society for Optics and Photonics, Bellingham, WA, USA, 1996) 2775, pp. 533–537.10.1117/12.246789Search in Google Scholar

[68] J. M. Miller, N. De Beaucoudrey, P. Chavel, J. Turunen and E. Cambril, Appl. Opt. 36, 23, 5717–5727 (1997).10.1364/AO.36.005717Search in Google Scholar PubMed

[69] P. Laakkonen and T. Levola, in ‘Method of producing a diffraction grating element,’ U.S. Patent 8092723, issued January 10 (2012).Search in Google Scholar

[70] L. O’Toole, C. Kang and F. Z. Fang, Nanomanufacturing Metrology, 3, 1–25 (2020).10.1007/s41871-019-00053-3Search in Google Scholar

[71] Y. Amitai, S. Reinhorn and A. Friesem, Appl. Opt. 34, 1352–1356 (1995).10.1364/AO.34.001352Search in Google Scholar PubMed

[72] Y. Amitai, in ‘Polarizing optical system,’ U.S. Patent 9551880, issued January 24 (2017).Search in Google Scholar

[73] Y. Amitai, in ‘Compact head-mounted display system,’ U.S. Patent Application 15/305933 (2017).Search in Google Scholar

[74] Y. Takatsuka, H. Yabu, K. Yoshimoto and H. Takahashi, in ‘Tenth International Conference on Intelligent Information Hiding & Multimedia Signal Processing’, pp. 403–406. IEEE, New York, 2014.Search in Google Scholar

[75] O. Kafra and I. Glatt, in ‘The Physics of Moire Metrology’tt, (Wiley, New York, 1990).Search in Google Scholar

[76] B. C. Kress, P. Meyrueis, Applied Digital Optics: from micro-optics to nanophotonics. John Wiley & Sons, New York, 2009.10.1002/9780470022658Search in Google Scholar

[77] L. Yun-Han, Y. Kun and W. Shin-Tson, Opt. Express, 25, 27008–27014 (2017).10.1364/OE.25.027008Search in Google Scholar PubMed

[78] T. J. Bunning, L. V. Natarajan, V. P. Tondiglia and R. L. Sutherland, Annu. Rev. Mater. Res. 30, 83–115 (2000).10.1146/annurev.matsci.30.1.83Search in Google Scholar

[79] T. Yoshida, K. Tokuyama, Y. Takai, D. Tsukuda, T. Kaneko, et al., J. Soc. Inf. Display, 26, 280–286 (2018).10.1002/jsid.659Search in Google Scholar

[80] I. Kasai, Y. Tanijiri, T. Endo and H. Ueda, Opt. Rev., 8, 241–244 (2001).10.1007/s10043-001-0241-zSearch in Google Scholar

[81] X. Zhang and F. Zeng, China Opt., 7, 731–738 (2014).10.3788/co.20140705.0731Search in Google Scholar

[82] B. C. Kress and W. J. Cummings, Sid Symposium Digest of Technical Papers, 48, 127–131 (2017).10.1002/sdtp.11586Search in Google Scholar

[83] Y. Amitai, in ‘Substrate-guide optical device,’ U.S. Patent 9910283, issued March 6 (2018).Search in Google Scholar

[84] K. Mirza and K. Sarayeddine, in ‘Key challenges to affordable see through wearable displays: the missing link for mobilearmass deployment,’ Internal Technical Paper-OPTINVENT SA (2012).10.1117/12.2018184Search in Google Scholar

[85] Y. Amitai, in ‘Light guide optical device,’ U.S. Patent 7457040, issued November 25 (2008).Search in Google Scholar

[86] LUMUS, in ‘Reflective Waveguide Displays for Mass Market AR’, ed: (LUMUS Ltd., Ness Ziona, Israel, 02.2019).Search in Google Scholar

[87] Z. Mu. Godview Resin MR Glasses. Available at: https://www.leiphone.com/news/201808/fbOARlMHlRJsn6AB.html (2018).Search in Google Scholar

[88] H. Takahashi, S. Suzuki, K. Kato and I. Nishi, Electron. Lett., 26, 2, 87–88 (1990).10.1049/el:19900058Search in Google Scholar

[89] H. Matsukuma, S. Madokoro, W. D. Astuti, Y. Shimizu and W. Gao, Nanomanufacturing Metrology, 2, 187–198 (2019).10.1007/s41871-019-00052-4Search in Google Scholar

[90] GodView Resin Arrayed Waveguide MR Glasses. Available at: https://optics.ofweek.com/2018-08/ART-250003-8110-30256038_2.html (2018).Search in Google Scholar

[91] T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto and E. Shimizu, Proceedings of SPIE, 3637, 110–118 (1999).10.1117/12.343762Search in Google Scholar

[92] Visual Depth Perception. Available at: http://homepage.math.uiowa.edu/∼stroyan/Site/Vision.html.Search in Google Scholar

[93] M. Lambooij, W. Ijsselsteijn, M. Fortuin and I. Heynderickx, J. Imaging Sci. Techn. 53, 30201-1–30201-14 (2009).10.2352/J.ImagingSci.Technol.2009.53.3.030201Search in Google Scholar

[94] M. Charbonneau, A. E. Priot, C. Roumes and A. Léger, In ‘Head-and Helmet-Mounted Displays XIII: Design and Applications’, (International Society for Optics and Photonics, Bellingham, WA, USA, 2008) vol. 6955, p. 69550J.Search in Google Scholar

[95] G. Kramida, IEEE Trans. Vis. Comp. Graph. 22, 1912–1931 (2016).10.1109/TVCG.2015.2473855Search in Google Scholar PubMed

[96] Y. Lu, B. Deng, Y. Yan, Z. Qie, J. Li, et al., in ‘AIP Conference Proceedings’, (AIP Publishing, College Park, MD, USA, 2019) 2185, p. 020001.10.1063/1.5137845Search in Google Scholar

[97] D. M. Hoffman, A. R. Girshick, K. Akeley and M. S. Banks, J. Vis. 8, 33.1–30 (2008).10.1167/8.3.33Search in Google Scholar PubMed PubMed Central

[98] E. H. Adelson and J. R. Bergen, Computational Models of Visual Processing, 1, 3–20 (1991).Search in Google Scholar

[99] R. Suryakumar, J. P. Meyers, E. L. Irving and W. R. Bobier, Vision Res. 47, 327–337 (2007).10.1016/j.visres.2006.10.006Search in Google Scholar PubMed

[100] M. Sungchul, P. Min-Chul, P. Sangin and W. Mincheol, Neurosci. Lett., 525, 89–94 (2012).10.1016/j.neulet.2012.07.049Search in Google Scholar PubMed

[101] H. Hagura and M. Nakajima, in ‘Human Vision and Electronic Imaging XI’, (International Society for Optics and Photonics, Bellingham, WA, USA, 2006) vol. 6057, p. 60570K. 2006.10.1117/12.642943Search in Google Scholar

[102] J. Frey, L. Pommereau, F. Lotte and M. Hachet, Assessing the Zone of Comfort in Stereoscopic Displays using EEG in CHI ’14 Extended Abstracts on Human Factors in Computing Systems, Apr 2014, Toronto, Canada. pp. 2041–2046, ff10.1145/2559206.2581191ff. ffhal-00982782f.10.1145/2559206.2581191Search in Google Scholar

[103] K. Akşit, W. Lopes, J. Kim, J. Spjut, A. Patney, et al., in ‘ACM SIGGRAPH 2017 Emerging Technologies’, (ACM, New York, 2017) p. 25.Search in Google Scholar

[104] D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Aksit, et al., IEEE T. Vis. Comput Gr. 23, 1322–1331 (2017).10.1109/TVCG.2017.2657058Search in Google Scholar PubMed

[105] J. Q. Jia, R. G. Li, Q. Q. Peng, X. D.Zhang, L. Liu, et al., Laser Infrared, 44, 888–891 (2014).Search in Google Scholar

[106] Q. Wang, D. Cheng, Q. Hou, H. Yuan, and Y. Wang, Design and stray light analysis of ultra-thin geometrical waveguide, Proc. SPIE 9618, 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, 961815 (5 August 2015); https://doi.org/10.1117/12.2193455.10.1117/12.2193455Search in Google Scholar

[107] C. Dewen, W. Yongtian, X. Chen, S. Weitao and J. Guofan, Opt. Express, 22, 20705–20719 (2014).10.1364/OE.22.020705Search in Google Scholar PubMed

[108] Q. Hou, Q. Wang, D. Cheng and Y. Wang, Proc. SPIE, 21, 100210C (2016).10.1117/12.2247323Search in Google Scholar

[109] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, et al., Nature, 455, 376–379 (2008).10.1038/nature07247Search in Google Scholar PubMed

[110] B.T. Schowengerdt, in ‘Virtual and augmented reality systems and methods’, U.S. Patent 9791700 (Magic Leap Inc, 2017).Search in Google Scholar

[111] X. Ni, A. V. Kildishev and V. M. Shalaev, Nat. Commun. 4, 2807 (2013).10.1038/ncomms3807Search in Google Scholar

[112] WIKIPEDIA. Total internal reflection. Available at: https://en.wikipedia.org/wiki/Total_internal_reflection (2019).Search in Google Scholar

Received: 2020-02-13
Accepted: 2020-05-14
Published Online: 2020-06-17
Published in Print: 2020-09-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0005/pdf
Scroll to top button