Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
-
Xinyu Hu
, Mingyong Cai
Abstract
Evaporation concentration of target analytes dissolved in a water droplet based on superhydrophobic surfaces could be able to break the limits for sensitive trace substance detection techniques (e.g. SERS) and it is promising in the fields such as food safety, eco-pollution, and bioscience. In the present study, polytetrafluoroethylene (PTFE) surfaces were processed by femtosecond laser and the corresponding processing parameter combinations were optimised to obtain surfaces with excellent superhydrophobicity. The optimal parameter combination is: laser power: 6.4 W; scanning spacing: 40 μm; scanning number: 1; and scanning path: 90 degree. For trapping and localising droplets, a tiny square area in the middle of the surface remained unprocessed for each sample. The evaporation and concentration processes of droplets on the optimised surfaces were performed and analyzed, respectively. It is shown that the droplets with targeted solute can successfully collect all solute into the designed trapping areas during evaporation process on our laser fabricated superhydrophobic surface, resulting in detection domains with high solute concentration for SERS characterisation. It is shown that the detected peak intensity of rhodamine 6G with a concentration of 10−6m in SERS characterisation can be obviously enhanced by one or two orders of magnitude on the laser fabricated surfaces compared with that of the unprocessed blank samples.
Acknowledgement
The authors acknowledge the support by the National Key R & D Program of China (Grant No. 2017YFB1104300), the National Natural Science Foundation of China (funder id: http://dx.doi.org/10.13039/501100001809, Grant No. 51575309, 51210009, 51905303) and China Postdoctoral Science Foundation (funder id: http://dx.doi.org/10.13039/501100002858, Grant No. 2018M641343).
References
[1] P. Fan, B. Bai, G. Jin, H. Zhang and M. Zhong, Appl. Surf. Sci. 457, 991–999 (2018).10.1016/j.apsusc.2018.07.017Search in Google Scholar
[2] K. M. Tanvir Ahmmed, J. Montagut and Anne-Marie Kietzig, Can. J. Chem. Eng. 95, 1934–1942 (2017).10.1002/cjce.22850Search in Google Scholar
[3] W. Liu, P. Fan, M. Yong, X. Luo, C. Chen, et al., Nanoscale 11, 8940 (2019).10.1039/C8NR10003ASearch in Google Scholar
[4] Y. Y. Yan, N. Gao and W. Barthlott, Adv Colloid Interface Sci. 169, 80–105 (2011).10.1016/j.cis.2011.08.005Search in Google Scholar
[5] P. Papadopoulos, L, Mammen, X. Deng, D. Vollmer and H. Butt, Proc. Natl. Acad. Sci. U.S.A 110, 3254–3258 (2013).10.1073/pnas.1218673110Search in Google Scholar
[6] H. Kusumaatmaja, M. L. Blow, A. Dupuis and J. M. Yeomans, EPL 81, 36003 (2008).10.1209/0295-5075/81/36003Search in Google Scholar
[7] R. K. Annavarapu, S. Kim, M. Wang, A. J. Hart and H. Sojoudi, Sci. Rep. 9, 405 (2019).10.1038/s41598-018-37093-6Search in Google Scholar
[8] R. G. Picknett and R. Bexon, J. Colloid Interface Sci. 61, 336–350 (1977).10.1016/0021-9797(77)90396-4Search in Google Scholar
[9] G. Mchale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, Langmuir 21, 11053–11060 (2005).10.1021/la0518795Search in Google Scholar PubMed
[10] H. Gelderblom, Á. G. Marin, H. Nair, A. van Houselt, L. Letterts, et al., Phys. Rev. E 83, 026306 (2011).10.1103/PhysRevE.83.026306Search in Google Scholar PubMed
[11] S. A. Kulinich and M. Farzaneh, Appl. Surf. Sci. 255, 4056–4060 (2009).10.1016/j.apsusc.2008.10.109Search in Google Scholar
[12] B. J. Zhang, K. J. Kim and C. Y. Lee, Exp. Therm. Fluid Sci. 96, 216–223 (2018).10.1016/j.expthermflusci.2018.02.035Search in Google Scholar
[13] Y. Yamada and A. Horibe, Phys. Rev. E 97, 043113 (2018).10.1103/PhysRevE.97.043113Search in Google Scholar PubMed
[14] S. Dash and S. V. Garimella, Langmuir 29, 10785–10795 (2013).10.1021/la402784cSearch in Google Scholar PubMed
[15] Y. Gao, N. Yang, T. You, C. Zhang and P. Yin, Sens. Actuators, B: Chem. 267, 129–135 (2018).10.1016/j.snb.2018.04.025Search in Google Scholar
[16] F. Guo, H. Yang, J. Mao, J. Huang, X. Wang, et al., Compos. Commun. 10, 151–156 (2018).10.1016/j.coco.2018.09.008Search in Google Scholar
[17] Y. Song, T. Xu, L-P. Xu and X. Zhang, Nanoscale 10, 20990–20994 (2018).10.1039/C8NR07348ASearch in Google Scholar
[18] Y. Zhang, C. Yang, B. Xue, Z. Peng, Z. Cao, et al., Sci. Rep. 8, 898 (2018).10.1038/s41598-018-19165-9Search in Google Scholar PubMed PubMed Central
[19] Y. Wang, M. Wang, L. Shen, Y. Zhu, X. Sun, et al., Chin. Phys. B 27, 17801–017801 (2018).10.1088/1674-1056/27/1/017801Search in Google Scholar
[20] G. C. Shi, M. L. Wang, Y. Y. Zhu, L. Shen, W. L. Ma, et al., Sci. Rep. 8, 6916 (2018).10.1038/s41598-018-25228-8Search in Google Scholar PubMed PubMed Central
[21] S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, et al., Anal. Chem. 87, 6017–6024 (2015).10.1021/acs.analchem.5b00551Search in Google Scholar PubMed
[22] F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, et al., Microelectron. Eng. 87, 798–801 (2010).10.1016/j.mee.2009.11.083Search in Google Scholar
[23] F. Gentile, M. L. Coluccio, E. Rodanina, S. Santoreillo, D. Di Mascolo, et al., Microelectron. Eng. 111, 272–276 (2013).10.1016/j.mee.2013.01.036Search in Google Scholar
[24] A. Milionis, D. Fragouli, L. Martiradonna, G. C. Anyfantis, P. Davide Cozzoli, et al., ACS Appl. Mater. Interfaces 6, 1036–1043 (2014).10.1021/am404565aSearch in Google Scholar PubMed
[25] W. Song, D. Psaltis and K. B. Crozier, Lab. Chip 14, 3907–3911 (2014).10.1039/C4LC00477ASearch in Google Scholar
[26] F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, et al., Nat. Photonics 5, 682–687 (2011).10.1038/nphoton.2011.222Search in Google Scholar
[27] J. E. George, V. K. Unnikrishnan, D. Mathur, S. Chidangil and S. D. George, Sens. Actuators, B. Chem. 272, 485–493 (2018).10.1016/j.snb.2018.05.155Search in Google Scholar
[28] F. Chu, S. Yan, J. Zheng, H. Zhang, K. Yu, et al., NRL 13, 244 (2018).10.1186/s11671-018-2658-3Search in Google Scholar PubMed PubMed Central
[29] A. Zhizhchenko, A. Kuchmizhak, O. Vitrik, Y. Kulchin and S. Juodkazis, Nanoscale 10, 21414–21424 (2018).10.1039/C8NR06119JSearch in Google Scholar PubMed
[30] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, et al., Nature 389, 827–829 (1997).10.1038/39827Search in Google Scholar
[31] E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, J. Phys. Chem. C 111, 13794–13803 (2007).10.1021/jp0687908Search in Google Scholar
[32] Y. Fang and Y. Huang, Appl. Phys. Lett. 102, 153108 (2013).10.1063/1.4802267Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/aot-2019-0072).
©2020 THOSS Media & De Gruyter, Berlin/Boston
Articles in the same Issue
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses
Articles in the same Issue
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses