Home Adaptive holographic interferometer based on optically addressed spatial light modulator for high-sensitivity optical fiber sensing
Article
Licensed
Unlicensed Requires Authentication

Adaptive holographic interferometer based on optically addressed spatial light modulator for high-sensitivity optical fiber sensing

  • Arnaud Peigné , Umberto Bortolozzo , Stefania Residori , Stéphanie Molin EMAIL logo , Pascale Nouchi , Daniel Dolfi and Jean-Pierre Huignard
Published/Copyright: February 23, 2017
Become an author with De Gruyter Brill

Abstract

Adaptive holographic interferometry is a promising method for high-sensitivity phase-modulation measurements in the presence of slow perturbations from the environment. This technique is based on the use of a nonlinear recombining medium. We report the realization of an adaptive holographic interferometer relying on an optically addressed liquid crystal spatial light modulator operating at 1.55 μm. The beam-coupling process that occurs in a GaAs-liquid crystal device, allows obtaining a phase-modulation sensitivity of 200 μrad/sqrt (Hz) at 1 kHz. The interferometer behaves as an optical high-pass filter, with a cutoff frequency of approximately 10 Hz, thus, filtering slow-phase disturbances, such as due to temperature variations or low-frequency fluctuations, and keeping the detection linear without the need of heterodyne or active stabilization. Moreover, owing to the basic principle of holography, this technique can be used with complex wave fronts such as the speckled field reflected by a highly scattering surface or the optical field at the output of a multimode optical fiber. We demonstrate both theoretically and experimentally that using a multimode optical fiber as a sensing element, rather than a single-mode fiber, allows improving the interferometer phase sensitivity. Finally, we present a phase-optical time domain reflectometry (OTDR) optical fiber sensor using the adaptive holographic interferometer.

Acknowledgments

This work has been supported by the French Délégation Générale de l’Armement (DGA) under contracts ANR-11-ASTR-0012, Astrid MEDUSE, and ANR-14-ASMA-0004-01, Astrid Maturation HYDRE.

References

[1] V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov and M. S. Soskin, Sov. Phys. Usp. 22, 742–756 (1979).10.1070/PU1979v022n09ABEH005609Search in Google Scholar

[2] A. A. Kamshilin, R. V. Romashko and Y. N. Kulchin, J. Appl. Phys. 105, 031101 (2009).10.1063/1.3049475Search in Google Scholar

[3] H. Sun, D. D Nolte, J. Hyland and E. Harmon, Proc. SPIE 8619, 86190E (2013).10.1117/12.2004921Search in Google Scholar

[4] U. Bortolozzo, D. Dolfi, J. P. Huignard, S. Molin, A. Peigné, et al., Opt. Lett. 40, 1302 (2015).10.1364/OL.40.001302Search in Google Scholar

[5] P. Delaye, L.-A. de Montmorillon and G. Roosen, Opt. Commun. 118, 154 (1995).10.1016/0030-4018(95)00169-9Search in Google Scholar

[6] M. B. Klein, K. V. Shcherbin and V. Danylyuk, in ‘OSA Trends in Optics and Photonics (TOPS), Photorefractive Effects, Materials, and Devices’, Ed. By P. Delaye, C. Denz, L. Mager and G. Montemezzani (OSA, Washington, DC, 2003), Vol. 87, pp. 483–489.10.1364/PEMD.2003.483Search in Google Scholar

[7] J. Lòpez Rivera, M. Plata Sànchez, A. Miridonov and S. Stepanov, Opt. Express 21, 4280 (2013).10.1364/OE.21.004280Search in Google Scholar PubMed

[8] P. Aubourg, J. P. Huignard, M. Hareng and R. A. Mullen, Appl. Opt. 21, 3706–3712 (1982).10.1364/AO.21.003706Search in Google Scholar PubMed

[9] I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, second edition, (Wiley Interscience, New York, 2007).10.1002/0470084030Search in Google Scholar

[10] P. Delaye, L. A. de Montmorillon, H. J. Bardeleben and G. Roosen, Appl. Phys. Lett. 64, 2640 (1994).10.1063/1.111477Search in Google Scholar

[11] U. Bortolozzo, S. Residori and J. P. Huignard, Appl. Opt 52, 220E73-05 (2013).10.1364/AO.52.000E73Search in Google Scholar PubMed

[12] K. Shcherbin, I. Gvozdovskyy and D. R. Evans, Communication at the Photorefractive Photonics Meeting, PR15, Villars, Switzerland, June 16–19 (2015).Search in Google Scholar

[13] U. Bortolozzo, S. Residori and J. P. Huignard, Laser Photonics Rev. 4, 483–498 (2010).10.1002/lpor.200910022Search in Google Scholar

[14] U. Bortolozzo, S. Residori and J. P. Huignard, Opt. Lett. 34, 2006 (2009).10.1364/OL.34.002006Search in Google Scholar

[15] J. Sun and S.-T. Wu, J. Polym. Sci., Part B: Polym. Phys. 52, 183–192 (2013).10.1002/polb.23391Search in Google Scholar

[16] R. J. Posey, G. A. Johnson and S. T. Vohra, Electron. Lett. 36, 1688–1689 (2000).10.1049/el:20001200Search in Google Scholar

[17] A. Masoudi, M. Belal and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).10.1088/0957-0233/24/8/085204Search in Google Scholar

Received: 2016-12-2
Accepted: 2017-1-23
Published Online: 2017-2-23
Published in Print: 2017-4-1

©2017 THOSS Media & De Gruyter

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2016-0065/html?lang=en
Scroll to top button