Home Fast and accurate deflectometry with crossed fringes
Article
Licensed
Unlicensed Requires Authentication

Fast and accurate deflectometry with crossed fringes

  • Yuankun Liu EMAIL logo , Evelyn Olesch , Zheng Yang and Gerd Häusler
Published/Copyright: July 16, 2014
Become an author with De Gruyter Brill

Abstract

Phase measuring deflectometry (PMD) acquires the two components of the local surface gradient via a sequence of two orthogonal sinusoidal fringe patterns that have to be displayed and captured separately. We will demonstrate that the sequential process (different fringe directions, phase shifting) can be completely avoided by using a cross fringe pattern. With an optimized Fourier evaluation, high quality data of smooth optical surfaces can be acquired within one single shot. The cross fringe pattern allows for one more improvement of PMD: we will demonstrate a novel phase-shift technique, where a one-dimensional N-phase shift allows for the acquisition of the two orthogonal phases, with only N exposures instead of 2N exposures. Therefore, PMD can be implemented by a one-dimensional translation of the fringe pattern, instead of the common two-dimensional translation, which is quite useful for certain applications.


Corresponding author: Yuankun Liu, Opto-Electronic Department, Sichuan University, Chengdu 610065, China; and Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Erlangen, 91058, Germany, e-mail:

References

[1] G. Häusler, German patent DE 19944354.Search in Google Scholar

[2] M. C. Knauer and G. Häusler, R. Lampalzer, German pa-tent DE 102004020419.Search in Google Scholar

[3] M. C. Knauer, J. Kaminski and G. Häusler, Proc. SPIE 5457, 366 (2004).Search in Google Scholar

[4] D. Pérard and J. Beyerer, Proc. SPIE 3204, 74 (1997).Search in Google Scholar

[5] M. Petz and R. Tutsch, VDI-Ber. 1844, 327 (2004).Search in Google Scholar

[6] T. Bothe, W. Li, C. von Kopylow and W. Jüptner, Proc. SPIE 5457, 411 (2004).Search in Google Scholar

[7] P. Su, R. E. Parks, L. Wang, R. Angel and J. H. Burge, Appl. Opt. 49, 4404–4412 (2010).Search in Google Scholar

[8] S. Ettl, J. Kaminski, E. Olesch, M. C. Knauer and G. Häusler, Appl. Opt. 47, 2091–2097 (2008).Search in Google Scholar

[9] C. Faber, M. Kurz, C. Röttinger, E. Olesch, D. Domingos, et al., Proc. Euspen 12, 84 (2012).Search in Google Scholar

[10] G. Häusler, C. Faber, F. Willomitzer and P. Dienstbier, Proc. DGaO, A8 (2012).Search in Google Scholar

[11] M. Takeda, H. Ina and S. Kobayashi, JOSA, 72, 156–160 (1982).10.1364/JOSA.72.000156Search in Google Scholar

[12] H. O.Bartelt, Y. Li, Opt. Comm. 48, 1–6 (1983).Search in Google Scholar

[13] M.Pirga, M. Kujawinska, Opt. Eng. 34, 2459–2466 (1995).Search in Google Scholar

[14] L. Huang, C. S. Ng and A. K. Asundi, Opt. Express, 19, 12809–12814 (2011).10.1364/OE.19.012809Search in Google Scholar PubMed

[15] R. Gerchberg and W. Saxton, Optik, 35, 237–246 (1972).10.1038/237246b0Search in Google Scholar

[16] H. Canabal, J. A. Quiroga and E. Bernabeu, Appl. Opt. 37, 6227–6233 (1998).10.1364/AO.37.006227Search in Google Scholar PubMed

[17] H. Canabal and E. Bernabeu, Proc. SPIE, 3744, 231 (1999).10.1117/12.357718Search in Google Scholar

[18] J. L. Li, H. J. Su, and X. Y. Su, Appl. Opt. 36, 277–280 (1997).Search in Google Scholar

[19] K. Liu, Y. Wang, D. L. Lau, Q. Hao and L.G. Hassebrook, Opt. Express 18, 5229–5244 (2010).10.1364/OE.18.005229Search in Google Scholar PubMed

[20] G. Häusler, C. Faber, E. Olesch and S. Ettl, Proc. SPIE 8788 (2013).Search in Google Scholar

[21] C. Faber, E. Olesch, R. Krobot and G. Häusler, Proc. SPIE 8493 (2012).Search in Google Scholar

Received: 2014-4-22
Accepted: 2014-6-23
Published Online: 2014-7-16
Published in Print: 2014-8-1

©2014 THOSS Media & De Gruyter

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2014-0032/pdf
Scroll to top button