Home Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries
Article Open Access

Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries

  • Jean Carlos Nakasato EMAIL logo and Marcone Corrêa Pereira
Published/Copyright: September 11, 2023

Abstract

In this work, we analyze the asymptotic behavior of a class of quasilinear elliptic equations defined in oscillating ( N + 1 ) -dimensional thin domains (i.e., a family of bounded open sets from R N + 1 , with corrugated bounder, which degenerates to an open bounded set in R N ). We also allow monotone nonlinear boundary conditions on the rough border whose magnitude depends on the squeezing of the domain. According to the intensity of the roughness and a reaction coefficient term on the nonlinear boundary condition, we obtain different regimes establishing effective homogenized limits in N -dimensional open bounded sets. In order to do that, we combine monotone operator analysis techniques and the unfolding method used to deal with asymptotic analysis and homogenization problems.

MSC 2010: 35B25; 35B27; 35B40; 35J92

1 Introduction

In this work, we are interested in analyzing the asymptotic behavior of the solutions of a quasilinear elliptic equation defined in the following class of thin domains:

(1.1) R ε = ( x , y ) R N + 1 : x ω , 0 < y < ε g x ε α for ε > 0 ,

where ω R N , N 1 , is an open, bounded, connected, and regular set with g : R N R satisfying:

g is a lower semicontinuous function in L ( R N ) , strictly positive, and L -periodic (i.e., there exists L R N , L = ( L 1 , , L N ) , such that

(H1) g ( y + L i e i ) = g ( y ) , for all y R N , and i = 1 , , N ,

where { e 1 , , e N } R N denotes the canonical basis of R N ). Also, we set

g 0 = min y R N g ( y ) > 0 , and g 1 = max y R N g ( y ) .

The parameter α in (1.1) is assumed to be positive, and establishes the roughness on the upper boundary of R ε . l R ε is the lateral boundary of R ε given by:

l R ε = ( x , y ) R N + 1 : x ω , 0 < y < ε g x ε α .

The upper boundary of R ε plays an important role in this work and is denoted by:

Γ ε = ( x , y ) R N + 1 : x ω , y = ε g x ε α .

Note that, according to [4], R ε is a purely periodic thin domain in R N + 1 since it exhibits a periodic structure set by the L -periodic function g . Its representative cell is the open set

(1.2) Y * = { ( y 1 , y 2 ) R N × R : y 1 Y , 0 < y 2 < g ( y 1 ) } ,

where Y R N is the R N -rectangle

Y = i = 1 N ( 0 , L i ) , L = ( L 1 , , L n ) .

Indeed, R ε can be seen as the union of the cell Y * appropriately rescaled in the vertical and horizontal directions by the terms ε and ε α , respectively.

We deal with the following quasilinear problem with nonlinear boundary condition defined in R ε :

(1.3) div a x , x ε α , y ε , u ε = f ε in R ε , a x , x ε α , y ε , u ε η ε + ε β b x , x ε α , y ε , u ε = ε β H ε in Γ ε , a x , x ε α , y ε , u ε η ε = 0 on R ε \ ( Γ ε l R ε ) , u ε = 0 in l R ε ,

where η ε is the outward unit normal to R ε , f ε L p ( R ε ) , H ε L p ( Γ ε ) , and p 1 + ( p ) 1 = 1 . The functions a and b are Carathéodory functions that satisfy monotone and usual p -growth conditions in the third variable (see Section 2). We set homogeneous Dirichlet boundary condition on the lateral borders. On the top, we have a type of Robin’s nonlinear boundary condition (which models the reaction catalyzed by the upper wall), and on the button, we have homogeneous Neumann boundary condition. The term ε β , set by the parameter β , is a reaction coefficient term that acts on the nonlinear boundary condition on Γ ε and depends on the squeezing of the open set R ε . Such term can be used to model many reaction-diffusion processes, which naturally arises, for instance, in chemical engineering, since one shall consider the effects of Newton’s cooling law. Here, as one can see in the following results, depending on the reaction coefficient ε β , the cooling from the outside through the upper wall determines how the limit behavior will be. In particular, it is related to microfluidic applications (see [40] for more details). For simplicity of our arguments, we will assume

(1.4) H ε = b x , x ε α , y ε , h ,

with h W 0 1 , p ( ω ) .

Under these conditions, we know that the variational formulation of (1.3) is given by:

(1.5) R ε a x , x ε α , y ε , u ε φ d x d y + ε β Γ ε b x , x ε α , y ε , u ε φ d S = R ε f ε φ d x d y + ε β Γ ε b x , x ε α , y ε , h φ d S , φ W 0 l 1 , p ( R ε ) ,

where

W 0 l 1 , p ( R ε ) = { φ W 1 , p ( R ε ) : u ε = 0 on l R ε }

is a Sobolev space equipped with the norm:

(1.6) φ W 0 l 1 , p ( R ε ) = 1 ε R ε φ p d x d y 1 p .

Furthermore, for each fixed ε > 0 , the existence and uniqueness of solutions are guaranteed by Minty-Browder’s theorem. Here, we are interested in analyzing the asymptotic behavior of the solutions u ε as ε 0 . We determine the effective problem of (1.3), as the domain R ε becomes thinner and thinner, although with a high oscillating boundary at the top and different order of reactions.

Indeed, the open set R ε ω × ( 0 , ε g 1 ) for all ε > 0 , and then, it degenerates to the open set ω as the parameter ε goes to zero. Hence, due to the thickness of R ε at ε 0 , it is expected that the sequence of solutions u ε will converge to a function depending only on the variable x ω and that this function will satisfy an equation of the same type as (1.3) but in ω R N . Here, we will determine this equation that will depend on the geometry and roughness of the thin domain, as well as, the reaction term on the border.

The parameters α and β define, respectively, the intensity of the roughness of the top boundary and the effect of the flux given by the nonlinear reactions on the border. As we have mentioned, the homogenized limit equation will depend tightly on these numbers. Concerning the parameter α , we will analyze three distinct cases. We will consider the weak oscillatory case ( 0 < α < 1 ), the resonant or critical case ( α = 1 ), and the high oscillatory one ( α > 1 ). We will obtain different limit problems according to these three cases and β varying in R . We will see that β = 1 is also a kind of critical value. When α > 0 and β 1 , we are able to analyze (1.3) in a satisfactory way. But when β < 1 and p ( 1 , 2 ) , we need to add some conditions that will depend on the values of α , β , and p ( 1 , 2 ) (see Proposition 4.1). In particular, we will treat α > 0 , p 2 , and β R improving the recent results obtained in [27] for N = 1 , p = 2 , α > 0 , and β R . In fact, our main goal here is to generalize previous works from bidimensional oscillating thin domains to ( N + 1 ) -dimensional ones for a much more general class of elliptic equations, which also includes nonlinear boundary conditions.

We will combine techniques involving the analysis of monotone operators and the so-called unfolding operator method from homogenization theory. It is worth noting that the unfolding operator was initially developed as an effective method to deal with homogenization problems in partial differential equations (see, for instance, [14,15]). See also the recent monograph on the subject [16] in order to have a nice and broad perspective of this technique. In [6], this method was adapted to bidimensional thin domains with locally periodic oscillatory boundaries, and in [7] with very mild regularity assumptions. In Section 3, we recall such results that can be directly adapted to R N + 1 .

As one will see, if f ε and H ε converge, in a certain sense, to functions f ¯ and H ¯ , respectively, the homogenized equations of (1.3) can be formally described as follows. Let us first assume β 1 . Hence, if α = 1 , the so-called resonant oscillating case is obtained by Theorem 4.3 and is given by:

(1.7) div A ( x , u ) + υ ( β ) B ( x , u ) = f ¯ + υ ( β ) H ¯ in ω , u = 0 on ω ,

where A and B are the following monotone operators defined for z R N :

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) d y 1 d y 2 and B ( x , z ) = u Y * b ( x , y 1 , y 2 , z ) d σ ( y ) .

X z is an auxiliary function that is defined for each z R N . It is the unique solution of

Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) y 1 y 2 ψ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) , and a.e. x R N ,

with Y * X z d y 1 d y 2 = 0 , where W # 1 , p ( Y * ) W 1 , p ( Y * ) is the Sobolev space of L -periodic functions on variable y 1 , which is given by:

W # 1 , p ( Y * ) = { ψ W 1 , p ( Y * ) : ψ ( y 1 + L , y 2 ) = ψ ( y 1 , y 2 ) , ( y 1 , y 2 ) Y * } .

The existence and uniqueness of X z , for each z R N , are guaranteed by the Minty-Browder’s theorem.

Also, the forcing terms f ¯ and H ¯ are given by:

f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 and H ¯ ( x ) = u Y * b ( x , y 1 , y 2 , h ( x ) ) d σ ( y ) , x ω ,

where f ˆ is the limit of the unfolding operator applied to the sequence f ε (see Section 3 and Theorem 4.3). The reaction term υ in (1.7) depends on the parameter β and is given by:

υ ( β ) = 1 , if β = 1 , 0 , if β > 1 .

Thus, under the conditions α = 1 and β 1 , the nonlinear boundary condition will be captured by the homogenized limit equation, only if β = 1 .

Next, if α ( 0 , 1 ) , then we are in the weakly oscillatory case (see Theorem 4.4); the limit equation of (1.3) is the same one given by (1.7), but now, with the monotone operator A set by a different auxiliary function. Now, the auxiliary function X z is the unique solution of:

Y A ˜ ( x , y 1 , z + y 1 X z ) y 1 ψ d y 1 = 0 , ψ W # 1 , p ( Y ) ,

where

A ˜ ( x , y 1 , ξ ) = I N × N 0 0 0 0 g ( y 1 ) a ( x , y 1 , y 2 , ξ ) d y 2 in Y × R N .

Note that A ˜ involves a kind of average of a , and then, it can be seen as a nonlocal monotone operator.

Now, let us suppose α > 1 . Here, see in Theorem 4.7, we still have to split the analysis in two other cases: 1 < α β and 1 β < α . If 1 < α β , the limit equation also assumes the form (1.7), but in the other side, the operators A and B are given by:

A ( x , ξ ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ξ + y 1 X ξ ) d y 1 d y 2 and B ( x , z ) = Y * b ( x , y 1 , g ( y 1 ) , z ) y 1 g ( y 1 ) d y 1 ,

where

Y * = Y × ( 0 , g 0 ) .

See that Y * Y * and it is associated with the non-rugged part of the thin domain R ε . Indeed, the expressions obtained for the operators A and B here are in agreement with the results of the previous work [5]. Since the roughness on the top of R ε is too high, the diffusion in this part must vanish setting diffusion coefficients just defined in Y * . We also obtain a distinguished forcing term H ¯ as a different coefficient υ . They are set by

H ¯ = b ( x , y 1 , g ( y 1 ) , h ) y 1 g ( y 1 ) and υ ( β ) = 1 , if β = α , 0 , if β > α .

Note that now, the limit equation (1.7) will capture the nonlinear boundary condition only as β = α . Also, we point out the dependence of the terms H ¯ and B with respect to y 1 g . It emphasizes the effect of the profile of the thin domain in the limit problem even in this case.

On the other hand, if 1 β < α , the family of solutions u ε will converge to the function h , which sets the nonlinear boundary condition (1.4). Due to the geometry of the thin domain, we can extend the function h from W 0 1 , p ( ω ) into W 0 l 1 , p ( R ε ) obtaining

(1.8) ε 1 p u ε h L p ( R ε ) 0 as ε 0 .

Finally, if we have β < 1 , Proposition 4.1 guarantees, for any γ > 0 , that

1 ε u ε h L p ( R ε ) p ε p c + c ε 1 β , p 2 , α > 0 , ε 1 β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , α 1 , ε 1 β 2 γ p + ε 2 γ 2 p + 1 α , 1 < p < 2 , α > 1 .

Thus, we obtain (1.8) for some appropriate combinations of α and p with β < 1 . In particular, (1.8) holds if α > 0 and p 2 . Under these conditions, the thin domain perturbation affects the solutions in such way that the nonhomogeneous boundary condition, given on the border, will establish the asymptotic behavior of the solutions at ε = 0 . As we have pointed out, it is in agreement with [27], and it is now accomplished for a larger class of quasilinear elliptic equations.

We note that somehow, the homogenized limit operators A and B , reproduce the properties of the operators a and b set in Section 2, which guarantees the existence and uniqueness of the homogenized solution (1.7) in each mentioned case (see Proposition A.1). Also, we point out the dependence of the auxiliary functions X on: ( i ) the function a , which sets the quasilinear equations; ( i i ) the geometry of the thin domain, given by the function g ; and ( i i i ) the intensity of the roughness established by the parameter α . This way we obtain the explicit dependence of the homogenized equation on the perturbed and original Problem (1.3).

1.1 Some classical examples

In order to illustrate our results, we will give some examples. They include the Laplacian, the p -Laplacian, and the pseudo p -Laplacian operators. Since we do not have homogenized equations for β < 1 , we will focus on the case set by β 1 .

For instance, let β 1 , a ( x , y 1 , y 2 , ξ ) = ξ and b ( x , y 1 , y 2 , z ) = z . Also, let us take f ε ( x , y ) = f ( x ) L 2 ( ω ) for all ε > 0 . Then, (1.3) becomes

Δ u ε = f ( x ) in R ε , u ε η ε + ε β u ε = ε β h on Γ ε , u ε η ε = 0 on R ε \ ( Γ ε l R ε ) , u ε = 0 on l R ε ,

and so, when ε 0 , the family of solutions u ε will converge to the unique solution of the problem:

div ( A u ) + υ ( β ) u Y * Y * u = f ¯ + υ ( β ) H ¯ in ω , u = 0 on ω ,

where A = ( a i j ) is a constant matrix, called by the constant homogenized matrix of coefficients, with

a i i = 1 Y * Y * 1 + X i y 1 i d y 1 d y 2 and a i j = X i y 1 j , i j , i , j = 1 , , N , if α = 1 , a i i = 1 g Y 1 g Y and a i j = 0 , i j , i , j = 1 , , N , if α < 1 , a i i = g 0 g Y and a i j = 0 , i j , i , j = 1 , , N , if α > 1 ,

where y 1 i denotes the i th partial derivative with respect to the variable y 1 R N ; φ Y is the average of any measurable function φ defined in Y : φ Y = 1 Y Y φ d y , and for each i = 1 , , N , X i is the unique solution of the auxiliary problem:

(1.9) Y * ( e i + y 1 y 2 X i ) y 1 y 2 ψ d y 1 d y 2 = 0 , with Y * X i d y 1 d y 2 = 0 , ψ W # 1 , 2 ( Y * ) .

The forcing terms are given by:

(1.10) f ¯ ( x ) = f ( x ) and H ¯ ( x ) = u Y * Y * h ( x ) ,

where Y * and u Y * are, respectively, the Lebesgue measure of the sets Y * and u Y * . The representative cell Y * has been introduced in (1.2), and u Y * is its upper boundary:

u Y * = { ( y 1 , g ( y 1 ) ) R N + 1 : y 1 Y } .

See that

Y * = Y g ( y 1 ) d y 1 and u Y * = Y 1 + g 2 d y 1 .

It is worth noting that we are improving the results from [2,57, 27,28] for any N 1 . Now are needed N auxiliary problems instead of one to determine the homogenized matrix of coefficients A . The dependence of the auxiliary functions X i with respect to the thin domain is explicit and is given by the open set Y * and function g .

Another important example is the well-known p -Laplacian. It was previously studied in [3,31] with homogeneous Neumann boundary conditions in bidimensional thin domains. Indeed, if we take a ( x , y 1 , y 2 , ξ ) = ξ p 2 ξ , b ( x , y 1 , y 2 , z ) = z p 2 z , and f ε = f L 2 ( ω ) , we obtain

Δ p u ε = f ( x ) in R ε , u ε p 2 u ε η ε + ε β u ε p 2 u ε = ε β h p 2 h on Γ ε , u ε p 2 u ε η ε = 0 on R ε \ ( Γ ε l R ε ) , u ε = 0 on l R ε .

It satisfies our conditions and possesses as limit problem of equation (1.7). The forcing terms are the same set by (1.10), and the operator A is now nonlinear and given by:

A ( ξ ) = 1 Y * Y * y 1 y 2 X ξ p 2 y 1 X ξ d y 1 d y 2 , α = 1 , ξ p 2 ξ g Y g 1 p p 1 , α < 1 , g 0 g Y ξ p 2 ξ , α > 1 ,

where, for each ( ξ 1 , , ξ N , 0 ) R N + 1 , X ξ is the unique solution of

Y * ( ξ , 0 ) + y 1 y 2 X ξ p 2 ( ( ξ , 0 ) + y 1 y 2 X ξ ) y 1 y 2 ψ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) ,

with Y * X ξ d y 1 d y 2 = 0 . In this case, even though A still satisfies the monotonicity properties of the p -Laplacian, the effective Problem (1.7), in general, is not a p -Laplacian equation (as is the case considered in [3,31] with N = 1 ). This feature appears due to the intricacy of the auxiliary problem and is in agreement with the pioneering work [18], which deals with quasilinear equations in perforated domains of R N . On the other side, if p = 2 , it is not difficult to see that we are able to recover (1.9) writing the solution X ξ = i = 1 N ξ i X i with X i given by (1.9).

Another interesting case is the so-called pseudo p -Laplacian operator. It is given setting a ( x , y 1 , y 2 , ξ ) = ( ξ 1 p 2 ξ 1 , , ξ N + 1 p 2 ξ N + 1 ) and b ( x , y 1 , y 2 , z ) = z p 2 z :

i = 1 N x i u ε x i p 2 u ε x i y u ε y p 2 u ε y = f ε in R ε , i = 1 N u ε x i p 2 u ε x i η i ε + u ε y p 2 u ε y η y ε + ε β u ε p 2 = ε β h p 2 h on Γ ε , i = 1 N u ε x i p 2 u ε x i η i ε + u ε y p 2 u ε y η y ε = 0 on R ε \ ( Γ ε l R ε ) . u ε = 0 on l R ε .

In this case, the homogenized matrix of coefficients is given by:

A ( ξ ) = 1 Y * Y * i = 1 N + 1 ξ i + X ξ y 1 i p 2 ξ i + X ξ y 1 i d y 1 d y 2 for α = 1 , i = 1 N ξ i p 2 ξ i g Y g 1 p p 1 for α < 1 , g 0 g Y i = 1 N ξ i p 2 ξ i for α > 1 ,

where X ξ , for each ξ = ( ξ 1 , , ξ N , 0 ) R N + 1 , is the unique solution of

Y * i = 1 N + 1 ξ i + X ξ y 1 i p 2 ξ i + X ξ y 1 i ψ y 1 i d y 1 d y 2 = 0 with Y * X ξ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) .

Here, we still denote y 1 N + 1 = y 2 .

Now, in order to finish the introduction, let us give a brief historical on related problems. We start by mentioning the pioneering works [23,36,37], where the authors studied reaction-diffusion equations posed in standard thin bounded domains, i.e., a family of ( N + 1 ) -dimensional bounded regions, which shrinks to an open bounded set of R N without oscillatory boundary. Quasilinear elliptic problems in such thin domains can be seen in [13,34] (see also [38]). In thin domains with oscillatory boundaries, we mention [2,25] where the Laplacian operator has been dealt with classical tools of homogenization theory (such as the extension operator method and the asymptotic expansion). See also [27,28,30] where related issues have been studied by the approach given by the unfolding method. The p -Laplacian in oscillating thin domains has been recently studied using the classical approach in [29] and as a consequence of the unfolding method in [3,31].

We also cite [47,12, 26,33,35] for works treating several types of thin domains with rough boundaries and distinct boundary value problems (reaction-diffusion, Stokes and Navier-Stokes equations, and others). For related topics, we still indicate [11] for a monotone problem in domain with oscillating boundary and [21,22], where the authors studied monotone problems with nonlinear Signorini boundary conditions in a domain with rough boundary (not thin one).

Note that all these works (and many others in the literature) deal with issues related to the effect of thickness and roughness on the behavior of solutions of partial differential equations. In fact, thin structures with rough boundaries naturally appear in many fields of science: fluid dynamics (lubrication), solid mechanics (thin rods, plates, or shells), or even physiology (blood circulation). Therefore, analyzing the asymptotic behavior of different models on these structures and understanding how the geometry and the roughness affects the problem is a very relevant issue in applied science (see, for instance, [1,8,9, 19,20,32, 39,41]). Finally, we cite [10,17] for questions related to quasilinear problems regarding existence, asymptotic, estimates, and related questions for general elliptic quasilinear problems.

This article is organized as follows: in Section 2, we introduce more notations setting our conditions. In Section 3, we discuss the unfolding method for oscillating thin domains in R N + 1 . The proofs of our main results are in Section 4. We also have an appendix Section A where the results concerning the well posed of the limit equations are obtained.

2 Settings of the problem and notations

In this section, we introduce some notations setting the necessary conditions that will be needed to introduce the unfolding operators and prove our results. First, we denote by c , c 1 , c 2 , c 3 , positive constants that independent of ε > 0 . Next, we establish an appropriated partition of the open set ω R N . Since g is L -periodic, for some L = ( L 1 , , L N ) R N , we can consider the following rescaled rectangular blocks Y k ε R N for each k Z N

Y k ε = { ( x 1 , , x N ) R N : ε α k i L i < x i < ε α ( k i + 1 ) L i , i = 1 , , N } .

Here, we basically rescale the box Y R N by ε α and shift it by an integer vector also multiplied by ε α . Note that it is in agreement with the classical unfolding operator techniques developed to fixed domains, for instance, in [14]. Also, we introduce the following open sets illustrated in Figure 1.

(2.1) K ε = { k Z N : ε α ( Y + k ) ω } , ω 0 ε = k K ε { Y k ε : Y k ε ω } and ω 1 ε = ω \ ω 0 ε .

Figure 1 
               Partition of the domain 
                     
                        
                        
                           ω
                        
                        \omega 
                     
                  .
Figure 1

Partition of the domain ω .

Now, let us rewrite each x ω in an appropriated form. For each x ω , there is a unique diagonal matrix with integer entries, which we denote by x ε α , and a unique x ε α Y , such that, for each ε > 0 ,

x = ε α x ε α L + ε α x ε α .

We also denote

(2.2) R 0 ε = ( x , y ) R N + 1 : x ω 0 ε , 0 < y < ε g x ε α and R 1 ε = ( x , y ) R N + 1 : x ω 1 ε , 0 < y < ε g x ε α .

Next, we describe the conditions on the Carathéodory functions a and b used to set our perturbed Problem (1.3). For that, let us set the following class of monotone functions:

(H2) Let  R N × R N × R × R M ( x , y 1 , y 2 , z ) A ( x , y 1 , y 2 , z ) R M  be a function, continuous in  x ,  L -periodic in variable  y 1 , satisfying  A ( x , y 1 , y 2 , 0 ) = 0  a.e.  ( x , y 1 , y 2 ) R N × R N × R .

If p 2 , we assume

(H3) A ( x , y 1 , y 2 , z 1 ) A ( x , y 1 , y 2 , z 2 ) , z 1 z 2 c z 1 z 2 p , A ( x , y 1 , y 2 , z 1 ) A ( x , y 1 , y 2 , z 2 ) c z 1 z 2 ( z 1 + z 2 ) p 2 c z 1 z 2 ( 1 + z 1 + z 2 ) p 2

a.e. ( x , y 1 , y 2 ) R N × R N × R , for some constant c > 0 independent of x , y 1 , y 2 and z i , i = 1 , 2 .

If 1 < p 2 , then

(H4) A ( x , y 1 , y 2 , z 1 ) A ( x , y 1 , y 2 , z 2 ) , z 1 z 2 c z 1 z 2 2 ( 1 + z 1 + z 2 ) p 2 , A ( x , y 1 , y 2 , z 1 ) A ( x , y 1 , y 2 , z 2 ) c z 1 z 2 p 1 ,

a.e. ( x , y 1 , y 2 ) R N × R N × R , with c > 0 independent of x , y 1 , y 2 and z i , i = 1 , 2 .

Then, we take functions a and b that satisfy hypotheses (H2), (H3), and (H4) with M = N + 1 and M = 1 , respectively. Furthermore, under this hypothesis, the weak formulation of Problem (1.3) is (1.5) and it has a unique solution u ε W 0 l 1 , p ( R ε ) , thanks to the Browder-Minty Theorem, where

W 0 l 1 , p ( R ε ) = { φ W 1 , p ( R ε ) : u ε = 0 on l R ε }

is the Sobolev space equipped with the norm:

(2.3) φ W 0 l 1 , p ( R ε ) = 1 ε R ε φ p d x d y 1 p .

From now on, we may use the following rescaled norms, which are very useful in thin domain problems. We denote

φ L p ( R ε ) = ε 1 p φ L p ( R ε ) φ L p ( R ε ) , 1 p < , and φ W 1 , p ( R ε ) = ε 1 p φ W 1 , p ( R ε ) φ W 1 , p ( R ε ) , 1 p < .

For completeness, we still set φ L ( R ε ) = φ L ( R ε ) .

Remark 2.1

Now, let us see that the usual norm of W 1 , p ( R ε ) is equivalent to the norm (2.3). Thereunto, let ϕ C 0 l ( R ε ¯ ) (the set of functions C with zero value in the lateral boundary of R ε ) and extend ϕ in the x plane by zero. Note that

ϕ ( x , y ) = ϕ ( x , y ) ϕ ( x + x 0 , y )

for some x 0 = ( x 01 , , x 0 N ) with ( x + x 0 ) ω . Consequently,

ϕ ( x , y ) = 0 x 0 i = 1 N ϕ x i x + x 0 x 0 t , y x 0 i x 0 d t i = 1 N 0 x 0 ϕ x i x + x 0 x 0 t , y p d t 1 p 0 x 0 x 0 i x 0 p d t 1 p [ diam ( ω ) ] 1 p i = 1 N 0 x 0 ϕ x i x + x 0 x 0 t , y p d t 1 p .

Therefore, if we take the power p and integrate in R ε , we obtain by Fubini’s theorem and a change of variables that

R ε ∣ϕ∣ p d x d y c i = 1 N R ε 0 x 0 ϕ x i x + x 0 x 0 t , y p d t d x d y c R ε x ϕ p d x d y

for some c > 0 independent of ε . Now, if ( x , y ) R ε \ [ ω × ( 0 , ε g 0 ) ] , we can write

ϕ ( x , y ) = ϕ ( x , y ) ϕ x , ε g 0 2 + ϕ x , ε g 0 2 ϕ x + x 0 , ε g 0 2 ,

for some ( x + x 0 ) ω . Since

ϕ ( x , y ) ϕ x , ε g 0 2 c ε 1 p 0 ε g x , x ε α ϕ y ( x , s ) p d s 1 p ,

and then,

R ε ϕ ( x , y ) ϕ x , ε g 0 2 p d x d y c ε p R ε ϕ y p d x d y .

Hence, one can conclude that

(2.4) c R ε ∣ϕ∣ p d x d y ε p R ε ϕ y p d x d y + R ε x ϕ p d x d y

for some c > 0 independent of ε . Thus, the usual norm of W 1 , p ( R ε ) is equivalent to the norm (2.3).

Finally, we finish this section pointing out that the variational formulation of (1.5) is equivalent to the variational inequality (see, for instance, [24])

(2.5) R ε a x , x ε α , y ε , φ ( u ε φ ) d x d y + ε β Γ ε b x , x ε α , y ε , φ ( u ε φ ) d S R ε f ε ( u ε φ ) d x d y + ε β Γ ε b x , x ε α , y ε , h ( u ε φ ) d S , φ W 0 l 1 , p ( R ε ) .

3 Unfolding approach

In this section, we briefly introduce the unfolding operators pointing out their useful properties. For details, the reader must consult [6,7,30]. First, we will define the unfolding operator to functions set in open bounded sets of R N + 1 . As one will see, the definition and the proofs of the properties are very similar to the ones performed in [6,7]. In the sequel, we define the boundary unfolding operator for functions set on the border of Lipschitz open sets according to [27] and references therein.

3.1 Unfolding operator

We define the unfolding operator in oscillating open sets as follows:

Definition 3.1

Let φ be a Lebesgue measurable function in R ε . The unfolding operator T ε , which transforms functions from R ε into ω × Y * , is defined by:

T ε φ ( x , y 1 , y 2 ) = φ ε α x ε α L + ε α y 1 , ε y 2 for ( x , y 1 , y 2 ) ω 0 ε × Y * 0 for ( x , y 1 , y 2 ) ω 1 ε × Y * ,

where the sets ω 0 ε and ω 1 ε are given by (2.1).

Next, we announce some properties of T ε whose proofs can be easily adapted from [6,7].

Proposition 3.2

The unfolding operator satisfies the following properties:

  1. T ε is linear;

  2. T ε ( φ ψ ) = T ε ( φ ) T ε ( ψ ) , for all φ , ψ Lebesgue measurable in R ε ;

  3. φ L p ( R ε ) , 1 p ,

    T ε ( φ ) x , x ε α , y ε = φ ( x , y ) ,

    for ( x , y ) R 0 ε , where R 0 ε is the set given by (2.2);

  4. Let φ a Lebesgue measurable function in Y * extended periodically in the variable y 1 . Then, φ ε ( x , y ) = φ x ε α , y ε is measurable in R ε and

    T ε ( φ ε ) ( x , y 1 , y 2 ) = φ ( y 1 , y 2 ) , ( x , y 1 , y 2 ) ω 0 ε × Y * .

    Moreover, if φ L p ( Y * ) , then φ ε L p ( R ε ) ;

  5. Let φ L 1 ( R ε ) . Then,

    = 1 Y ω × Y * T ε φ ( x , y 1 , y 2 ) d x d y 1 d y 2 = 1 ε R 0 ε φ ( x , y ) d x d y = 1 ε R ε φ ( x , y ) d x d y 1 ε R 1 ε φ ( x , y ) d x d y ,

    where R 0 ε and R 1 ε are given by (2.2).

  6. For all φ W 1 , p ( R ε ) ,

    y 1 T ε φ = ε α T ε x φ a n d y 2 T ε φ = ε T ε φ y a . e . i n ω × Y * .

  7. φ L p ( R ε ) , T ε ( φ ) L p ( ω × Y * ) , 1 p . Moreover,

    T ε φ L p ( ω × Y * ) = Y ε 1 p φ L p ( R 0 ε ) Y ε 1 p φ L p ( R ε ) ;

  8. For Ψ C # ( ω × Y * ) (the periodic functions in y 1 variable), define { Ψ ε } by:

    Ψ ε ( x , y ) = Ψ x , x ε α , y ε , ( x , y ) R ε .

    Then, Ψ ε C ( R ε ¯ ) and

    T ε ( Ψ ε ) ( x , y 1 , y 2 ) = Ψ ε α x ε α L + ε α y 1 , y 1 , y 2 ,

    for all ( x , y 1 , y 2 ) ω 0 ε × Y * .

Now, let us introduce the following definition:

Definition 3.3

We say that the sequence φ ε L 1 ( R ε ) satisfies the unfolding criterion for integrals (u.c.i) if 1 ε R 1 ε φ ε d x d y 0 , when ε 0 .

We have the following result:

Proposition 3.4

Let φ ε L p ( R ε ) , 1 p < , with φ ε L p ( R ε ) uniformly bounded; u ε L q ( R ε ) with p 1 + q 1 = r 1 for r > 1 ; ϕ L p ( ω ) , with p 1 + ( p ) 1 = 1 ; and Ψ ε C ( R ε ¯ ) defined as in the item 3.2of Proposition 3.2. Then,

  1. { φ ε } satisfies the u.c.i.

  2. { φ ε u ε } satisfies the u.c.i.

  3. { φ ε ϕ } satisfies the u.c.i, for 1 < p .

  4. { φ ε Ψ ε } satisfies the u.c.i.

Proof

The proofs are similar to those ones given in [6, 7] for bidimensional open sets.□

Next, let us state some convergence properties of the unfolding operator. The proofs are very similar to the bidimensional case and, therefore, will be omitted.

Proposition 3.5

The following convergence holds:

  1. For φ L p ( ω ) , 1 p < ,

    T ε φ φ s t r o n g l y i n L p ( ω × Y * ) .

  2. Let ψ C # ( ω × Y * ) . Define u ε ( R ε ¯ ) as:

    u ε ( x , y ) = ψ x , x ε α , y ε , ( x , y ) R ε .

    Then,

    T ε u ε ψ s t r o n g l y i n L p ( ω × Y * ) , 1 p < .

We write φ ( x , y ) = V ( x ) + φ r ( x , y ) , where V is defined as follows:

(3.1) V ( x ) 1 ε g 0 0 ε g 0 φ ( x , s ) d s a.e. x ω .

Proposition 3.6

Let φ ε W 1 , p ( R ε ) , 1 < p < , with φ ε W 1 , p ( R ε ) uniformly bounded and V ε ( x ) defined as in (3.1). Then, there exists a function φ W 1 , p ( ω ) such that, up to subsequences,

V ε φ w e a k l y i n W 1 , p ( ω ) a n d s t r o n g l y i n L p ( ω ) , φ ε φ L p ( R ε ) 0 , T ε φ ε φ s t r o n g l y i n L p ( ω ; W 1 , p ( Y * ) ) .

Moreover, if u ε W 0 l 1 , p ( R ε ) , then u W 0 1 , p ( ω ) .

Finally, we have:

Theorem 3.7

Let φ ε W 1 , p ( R ε ) for 1 p < , with φ ε W 1 , p ( R ε ) = ε 1 p φ ε W 1 , p ( R ε ) uniformly bounded. Then, there exists φ W 1 , p ( ω ) and φ 1 L p ( ω ; W # 1 , p ( Y * ) ) such that (up to subsequences)

  1. if α = 1 , we have

    T ε φ ε φ s t r o n g l y i n L p ( ω ; W 1 , p ( Y * ) ) , T ε x φ ε x φ + y 1 φ 1 w e a k l y i n L p ( ω × Y * ) , T ε y φ ε y 2 φ 1 w e a k l y i n L p ( ω × Y * ) .

  2. If α < 1 , we obtain y 2 φ 1 = 0 and

    T ε φ ε φ s t r o n g l y i n L p ( ω ; W 1 , p ( Y * ) ) , T ε x φ ε x φ + y 1 φ 1 w e a k l y i n L p ( ω × Y * ) .

Remark 3.8

It is worth noting that the function φ 1 is defined up to additive functions depending on x .

3.2 Boundary unfolding operator

Here, we introduce the boundary unfolding operator. We need the following condition:

(H5) Suppose that  g : R N R  satisfies Hypothesis (H1) and is a Lipschitz function with  g L ( R N ) .

First, let us prove a result concerning an uniform embedding in ε :

Proposition 3.9

For any φ W 1 , p ( R ε ) , it holds

φ L p ( Γ ε ) C ε 1 p φ y L p ( R ε ) + 1 ε 1 p φ L p ( R ε ) ,

where 0 < C = C ( ε , g 0 , g L ( R N ) ) is such that C is independent of ε for α 1 and ε < 1 . For α > 1 , C ( ε , g 0 , g L ( R N ) ) = ε 1 α p C ( g 0 , g L ( R N ) ) whenever ε < 1 .

Proof

Let φ C ( R ε ¯ ) . Note that

(3.2) φ x , ε g x ε α φ ( x , z ) = z ε g x ε α φ y ( x , s ) d s ( ε g 1 ) 1 p 0 ε g x ε α φ y ( x , s ) p d s 1 p

for any z ε g x ε α ε g 0 2 , ε g x ε α .

It is clear that

φ x , ε g x ε α = φ x , ε g x ε α φ ( x , z ) + φ ( x , z ) .

Take the power p in both sides of the aforementioned equality and put it together with (3.2). Then,

φ p x , ε g x ε α ε p 1 c 0 ε g x ε α φ y ( x , s ) p d s + c φ p ( x , z ) .

Integrate it with respect to z between ε g x ε α ε g 0 2 and ε g x ε α , we obtain

ε c φ p x , ε g x ε α ε p c 0 ε g x ε α φ y ( x , s ) p d s + c 0 ε g x ε α φ p ( x , z ) d z .

Finally, multiplying by 1 + ε 1 α g ( x ε α ) 2 and integrating in x ω lead us to:

ε c φ L p ( Γ ε ) p ε p c 1 + ε 2 2 α g L ( R N ) 2 R ε φ y ( x , s ) p d x d y + c 1 + ε 2 2 α g L ( R N ) 2 R ε φ p d x d y ,

which implies the result due to assumptions on function g .□

Proposition 3.10

For φ W 1 , p ( R ε ) ,

φ L p ( R ε ) p C ε φ L p ( Γ ε ) p + ε p φ y L p ( R ε ) p ,

with C > 0 a constant depending only on g 1 but independent of ε .

Proof

Let φ W 1 , p ( R ε ) . Note that

φ ( x , y ) = φ ( x , ε g ( x ε α ) ) y ε g ( x ε α ) φ y ( x , s ) d s .

Putting the power p in both sides leads us to:

φ ( x , y ) p 2 p φ ( x , ε g ( x ε α ) ) p + 2 p 0 ε g ( x ε α ) φ y ( x , s ) d s p 2 p φ ( x , ε g ( x ε α ) ) p 1 + ε 2 g ( x ε α ) 2 + 2 p ( g 1 ε ) p p 0 ε g ( x ε α ) φ y ( x , s ) p d s ,

where the last inequality was obtained due to a Hölder’s inequality. Next, we integrate with respect to y between 0 and ε g ( x ε α ) and then integrate with respect to x ω . We obtain

φ L p ( R ε ) p 2 g 1 ε φ L p ( Γ ε ) p + 2 p g 1 p 1 ε p 1 φ y L p ( R ε ) p .□

From here on, the results of this subsection can be found in [27,28,30]. We state them for the convenience of the reader. Next, we define the boundary unfolding operator.

Definition 3.11

Let φ be in L p ( Γ ε ) . We define the boundary unfolding operator T ε b by:

T ε b φ ( x , y 1 ) = φ ε α x ε α L + ε α y 1 , ε g ( y 1 ) for ( x , y 1 ) ω 0 ε × Y , 0 for ( x , y 1 ) ω 1 ε × Y

where the sets ω 0 ε and ω 1 ε are given by (2.1).

Now, in order to introduce some properties of T ε b , let us still set

u Y * = { ( y 1 , g ( y 1 ) ) R N + 1 : y 1 Y } , Γ 0 ε = x , ε g x ε α R N + 1 : x ω 0 ε and Γ 1 ε = x , ε g x ε α R N + 1 : x ω 1 ε .

Proposition 3.12

The boundary unfolding satisfies the following properties:

  1. T ε b is linear and T ε b φ T ε b ψ = T ε b ( φ ψ ) , for all φ , ψ L p ( Γ ε ) .

  2. For any φ L p ( Γ ε ) ,

    Γ ε φ d S Γ 1 ε φ d S = Γ 0 ε φ d S = 1 Y ω × u Y * T ε b φ d ε d x d σ ( y 1 ) ,

    where

    d ε ( y 1 , g ( y 1 ) ) = d ε ( y 1 ) = 1 + ε 1 α g ( y 1 ) 2 1 + g ( y 1 ) 2 .

  3. Let φ L p ( Γ ε ) . Then,

    T ε b φ d ε 1 p L p ( ω × u Y * ε α x ε α L + ε α y 1 ) Y 1 p φ L p ( Γ ε ) .

  4. Let u ε W 1 , p ( R ε ) be such that T ε u ε ψ ^ weakly (respectively, strongly) in L p ( ω ; W 1 , p ( Y * ) ) . Then,

    T ε b u ε ψ ^ w e a k l y ( r e s p e c t i v e l y s t r o n g l y ) i n L p ( ω × u Y * ) .

Remark 3.13

If α < 1 in item 3.12 of Proposition 3.12, then d ε 1 1 + g ( x , y 1 ) 2 , as ε 0 . If α = 1 , then d ε 1 ; and if α > 1 , ε α 1 d ε g ( y 1 ) 1 + g ( y 1 ) 2 = d ( y 1 ) . Also, if β α > 1 , we have ε β 1 d ε 0 .

Note also that for ε small enough and α > 1 , we have

T ε b φ L p ( ω × u Y * ) T ε b φ d ε 1 p L p ( ω × u Y * ) .

4 Main results

In this section, we will show the main results of this article. The first one regards the uniform bounds of the solutions. Note that, in some particular cases, we are also able to obtain rates of convergence. In the sequel, we will describe the asymptotic behavior of (1.3) with respect to the roughness parameter α > 0 . We will prove: Theorem 4.1, concerning the resonant case given by α = 1 , Theorem 4.2, associated with the weakly regime set by α ( 0 , 1 ) , and Theorem 4.3, where the strongly case is established setting α > 1 .

Proposition 4.1

Suppose that f ε L p ( R ε ) c , with c > 0 independent of ε .

Then, for some c > 0 independent of ε > 0 , the weak solutions of (1.5) satisfy

u ε h W 1 , p ( R ε ) c ,

for all p ( 1 , + ) , α 0 , and β R . In particular, u ε W 1 , p ( R ε ) is uniformly bounded.

Moreover,

  1. If 0 < α 1 , then

    u ε L p ( Γ ε ) p c , p > 1 β 1 , u ε h L p ( Γ ε ) p c ε 1 β , p 2 , β < 1 , u ε h L p ( Γ ε ) p c ε 1 β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , β < 1 ,

    where γ > 0 , 1 β 2 γ p > 0 .

  2. If α > 1 , then

    ε α 1 u ε L p ( Γ ε ) p c , p > 1 β 1 , u ε h L p ( Γ ε ) p c ε 1 β , p 2 , β < 1 , ε α 1 u ε h L p ( Γ ε ) p c ε α β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , β < 1 ,

    where α β 2 γ p > 0 , γ > 0 .

Furthermore, for β < 1 ,

u ε h L p ( R ε ) p ε p c + c ε 1 β , p 2 , α > 0 , ε 1 β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , α 1 , ε 1 β 2 γ p + ε 2 γ 2 p + 1 α , 1 < p < 2 , α > 1 .

Proof

Let us take φ = ε 1 ( u ε h ) in (1.5). Next, let us add, in both sides of the equation, the term:

1 ε R ε a x , x ε α , y ε , h ( u ε h ) d x d y .

Then, we obtain

1 ε R ε a x , x ε α , y ε , u ε a x , x ε α , y ε , h ( u ε h ) d x d y + ε β 1 Γ ε b x , x ε α , y ε , u ε b x , x ε α , y ε , h ( u ε h ) d S = 1 ε R ε f ε ( u ε h ) d x d y 1 ε R ε a x , x ε α , y ε , h ( u ε h ) d x d y = I I I .

In the following, we estimate I and I I . By Poincaré inequality,

I f ε L p ( R ε ) u ε h L p ( R ε ) c f ε L p ( R ε ) u ε h W 1 , p ( R ε ) ,

and, by Hypotheses (H3) and (H4), if p 2 , there exists c > 0 , such that

I I a , ε α , ε , h L p ( R ε ) u ε h L p ( R ε ) c 1 + h L p ( ω ) p p u ε h W 1 , p ( R ε ) ,

and, if 1 < p < 2 ,

I I c h W 1 , p ( ω ) p 1 u ε h W 1 , p ( R ε ) .

Thus, for some c > 0 ,

(4.1) 1 ε R ε a x , x ε α , y ε , u ε a x , x ε α , y ε , h ( u ε h ) d x d y + ε β 1 Γ ε b x , x ε α , y ε , u ε b x , x ε α , y ε , h ( u ε h ) d S c u ε h W 1 , p ( R ε ) .

Consequently, if p 2 , it follows from Hypothesis (H3) on functions a and b , respectively, that

c 0 u ε h W 1 , p ( R ε ) 1 ε R ε a x , x ε α , y ε , u ε a x , x ε α , y ε , h ( u ε h ) d x d y + ε β 1 Γ ε b x , x ε α , y ε , u ε b x , x ε α , y ε , h ( u ε h ) d S c u ε h W 1 , p ( R ε ) ,

and

c 0 ε β 1 u ε h L p ( Γ ε ) p 1 ε R ε a x , x ε α , y ε , u ε a x , x ε α , y ε , h ( u ε h ) d x d y + ε β 1 Γ ε b x , x ε α , y ε , u ε b x , x ε α , y ε , h ( u ε h ) d S c u ε h W 1 , p ( R ε ) .

Hence, there exist constants c 0 and c 1 > 0 such that

(4.2) u ε h W 1 , p ( R ε ) c 0 and ε β 1 u ε h L p ( Γ ε ) c 1 , ε > 0 .

On the other side, if 1 < p < 2 , it follows from the Young’s inequality that:

u ε h W 1 , p ( R ε ) p p λ 2 p 2 ε R ε u ε h 2 ( 1 + u ε + h ) p 2 d x d y + ( 2 p ) λ 2 ( 2 p ) 3 p 2 ε R ε ( 1 + u ε h p + 2 h p ) d x d y .

for any λ > 0 . Then, for λ big enough, there exist c 0 and c 1 > 0 , such that

u ε h W 1 , p ( R ε ) p c 0 ε R ε u ε h 2 ( 1 + u ε + h ) p 2 d x d y + c 1 ε R ε ( 1 + 2 h p ) d x d y .

Now, due to Hypothesis (H4) and (4.1), we have

c ε R ε u ε h 2 ( 1 + u ε + h ) p 2 d x d y 1 ε R ε a x , x ε α , y ε , u ε a x , x ε α , y ε , h ( u ε h ) d x d y + ε β 1 Γ ε b x , x ε α , y ε , u ε b x , x ε α , y ε , h ( u ε h ) d S c u ε h W 1 , p ( R ε ) .

Thus, for some constant c > 0 ,

(4.3) u ε h W 1 , p ( R ε ) p c u ε h W 1 , p ( R ε ) + c 1 ε R ε ( 1 + 2 h p ) d x d y c u ε h W 1 , p ( R ε ) + c 1 g 1 ω ( 1 + 2 h p ) d x p ( 1 , 2 ) and ε > 0 .

Therefore, u ε h W 1 , p ( R ε ) is uniformly bonded in ε > 0 for all p ( 1 , + ) .

Next, we estimate the norm u ε h L p ( Γ ε ) . From (4.1) and (H4),

(4.4) ε β 1 Γ ε u ε h 2 ( 1 + u ε + h ) p 2 d S c u ε h W 1 , p ( R ε ) c , when 1 < p < 2 .

By Proposition 3.9 and (2.4), there exist constants c 0 , c 1 , and c 2 such that

(4.5) c 0 u ε h L p ( Γ ε ) ε y ( u ε h ) L p ( R ε ) + u ε h L p ( R ε ) 1 , α 1 , ε 1 α p , α > 1 , c 1 u ε h W 1 , p ( R ε ) 1 , α 1 , ε 1 α p , α > 1 , c 2 1 , α 1 , ε 1 α p , α > 1 .

Thus, the result follows if β 1 .

Now, let us assume β < 1 . Then, for any γ > 0 and 1 < p < 2 , we have by the Young’s inequality that

Γ ε u ε h p d S p λ 2 p ε 2 γ p 2 Γ ε u ε h 2 ( 1 + u ε + h ) p 2 d S + ( 2 p ) 3 p ε 2 γ 2 p 2 λ 2 2 p Γ ε ( 1 + u ε h p + 2 p h p ) d S .

Hence, for λ big enough and (4.4), there exists c > 0 such that

(4.6) c Γ ε u ε h p d S ε 1 β 2 γ p + ε 2 γ 2 p Γ ε ( 1 + h p ) d S .

It remains to evaluate the last integral on the right-hand side. Before doing so, observe that

1 + ε 2 2 α g x ε α 2 2 max { 1 , g L ( R N ) } , α = 1 , 1 , α < 1 , ε 1 α g L ( R N ) , α > 1 ,

for any 1 > ε > 0 , which allows us to conclude that:

Γ ε ( 1 + h p ) d S = ω ( 1 + h ( x ) p ) 1 + ε 2 2 α g x ε α 2 d x ( ω + h L p ( ω ) p ) 2 max { 1 , g L ( R N ) } , α = 1 , 1 , α < 1 , ε 1 α g L ( R N ) , α > 1 .

The aforementioned estimate and (4.6) lead us to

(4.7) c Γ ε u ε h p d S ε 1 β 2 γ p + ε 2 γ 2 p ( ω + h L p ( ω ) p ) 2 max { 1 , g L ( R N ) } , α = 1 , 1 , α < 1 , ε 1 α g L ( R N ) , α > 1 ,

and β < 1 .

Consequently, from (4.2), (4.3), (4.5), and (4.7), we have

(4.8) u ε h W 1 , p ( R ε ) c , p > 1 , u ε h L p ( Γ ε ) p c 1 , p > 1 , α 1 , and β 1 , ε 1 α , p > 1 , α > 1 , and β 1 , ε 1 β , p 2 , α > 0 , and β < 1 , ε 1 β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , α 1 , and β < 1 , ε 1 β 2 γ p + ε 2 γ 2 p + 1 α , 1 < p < 2 , α > 1 , and β < 1 .

Note that we still need to estimate u ε h L p ( R ε ) for β < 1 in order to finish the proof of the current proposition. Indeed, combining Proposition 3.10 and (4.8), we obtain

c 0 u ε h L p ( R ε ) p ε p y ( u ε h ) L p ( R ε ) p + u ε h L p ( Γ ε ) p ε p c 1 + c ε 1 β , p 2 , α > 0 , ε 1 β 2 γ p + ε 2 γ 2 p , 1 < p < 2 , α 1 , ε 1 β 2 γ p + ε 2 γ 2 p + 1 α , 1 < p < 2 , α > 1 ,

completing the proof.□

Remark 4.2

Before we start the proof of Theorems 4.14.3, we observe that, from item 3.2 from Proposition 3.2, item 3.12 from Proposition 3.12, and Inequality (2.5), we have that

ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ( T ε u ε T ε φ ) d x d y 1 d y 2 + Y ε R 1 ε a x , x ε α , y ε , φ ( u ε φ ) d x d y + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b φ ( T ε b u ε T ε b φ ) d ε d x d σ ( y ) + Y ε β 1 Γ 1 ε b x , x ε α , y ε , φ ( u ε φ ) d S ω × Y * T ε f ε ( T ε u ε T ε φ ) d x d y 1 d y 2 + Y ε R 1 ε f ε ( u ε φ ) d x d y + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b h ( T ε b u ε T ε b φ ) d ε d x d σ ( y ) + Y ε β 1 Γ 1 ε b x , x ε α , y ε , h ( u ε φ ) d S ,

for all φ W 0 l 1 p ( R ε ) . Moreover, due to Proposition 3.4, we have that the integrals on R 1 ε and Γ 1 ε converge to zero as ε 0 . Hence, we can omit these terms keeping the equations shorter, and we have

(4.9) ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ( T ε u ε T ε φ ) d x d y 1 d y 2 + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b φ ( T ε b u ε T ε b φ ) d ε d x d σ ( y ) ω × Y * T ε f ε ( T ε u ε T ε φ ) d x d y 1 d y 2 + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b h ( T ε b u ε T ε b φ ) d ε d x d σ ( y ) ,

for all φ W 0 l 1 , p ( R ε ) .

4.1 Case α = 1

Now, we are in conditions to show our main results concerning to the order of roughness. We first consider the resonant case. We have the following result:

Theorem 4.3

Let u ε W 0 l 1 , p ( R ε ) be the sequence of weak solutions of (1.5) for α = 1 and β 1 . Suppose that f ε L p ( R ε ) is such that f ε L p ( R ε ) is uniformly bounded and

T ε f ε f ˆ w e a k l y i n L p ( ω × Y * ) .

Then, there exists unique ( u , u 1 ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) ) such that

T ε u ε φ s t r o n g l y i n L p ( ω ; W 1 , p ( Y * ) ) , T ε x u ε x u + y 1 u 1 w e a k l y i n L p ( ω × Y * ) , T ε y u ε y 2 u 1 w e a k l y i n L p ( ω × Y * ) , T ε b u ε u s t r o n g l y i n L p ( ω × u Y * ) ,

satisfying

ω × Y * a ( x , y 1 , y 2 , u + y 1 y 2 u 1 ) ( φ + y 1 y 2 ψ ) d x d y 1 d y 2 + υ ( β ) ω × u Y * b ( x , y 1 , y 2 , u ) ϕ d x d σ ( y ) = ω × Y * f ˆ φ d x d y 1 d y 2 + υ ( β ) ω × u Y * b ( x , y 1 , y 2 , h ) ϕ d x d σ ( y )

for all ( φ , ψ ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) ) , with υ ( 1 ) = 1 and υ ( β ) = 0 for β > 1 . Moreover,

ω [ A ( x , x u ) x ϕ + υ ( β ) B ( x , u ) ϕ ] d x = ω ( f ¯ + υ ( β ) H ¯ ) φ d x , ϕ W 0 1 , p ( ω ) ,

where

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) d y 1 d y 2 , f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 , B ( x , z ) = u Y * b ( x , y 1 , y 2 , z ) d σ ( y ) and H ¯ = u Y * b ( x , y 1 , y 2 , h ) d σ ( y ) .

Moreover, for each z R N , X z is the unique solution of the auxiliary problem:

(4.10) Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) y 1 y 2 ψ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) ,

and a.e. x R N satisfying Y * X z d y 1 d y 2 = 0 .

Proof

We are in condition of applying Theorem 3.7, thanks to Proposition 4.1, which means that there exist ( u , u 1 ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) ) such that, up to subsequences,

T ε u ε φ strongly in L p ( ω ; W 1 , p ( Y * ) ) , T ε x u ε x u + y 1 u 1 weakly in L p ( ω × Y * ) , T ε y u ε y 2 u 1 weakly in L p ( ω × Y * ) .

Moreover,

T ε b u ε u strongly in L p ( ω × u Y * ) .

Let ϕ W 0 1 , p ( ω ) and ψ C # ( w × Y * ) . Define

φ ε ( x , y ) = ϕ ( x ) + ε ψ x , x ε , y ε for ( x , y ) R ε .

Note that, by Proposition 3.5,

T ε φ ε ϕ strongly in L p ( ω × Y * ) , T ε φ ε ( ϕ + y 1 , y 2 ψ ) strongly in [ L p ( ω × Y * ) ] N + 1 .

We need to prove that

(4.11) ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ( x , y 1 , y 2 , ϕ + y 1 , y 2 ψ ) p d x d y 1 d y 2 0 ,

which holds if

ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ε α x ε α L + ε α y 1 , y 1 , y 2 , ϕ + y 1 , y 2 ψ p d x d y 1 d y 2 0 ,

since

ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , ϕ + y 1 , y 2 ψ a ( x , y 1 , y 2 , ϕ + y 1 , y 2 ψ ) p d x d y 1 d y 2 0 .

Suppose p 2 . Note that, by Hypothesis (H3),

c a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ε α x ε α L + ε α y 1 , y 1 , y 2 , ϕ + y 1 y 2 ψ p T ε φ ε ( ϕ + y 1 y 2 ψ ) p ( 1 + T ε φ ε + ϕ + y 1 y 2 ψ ) ( p 2 ) p .

Integrating in ω × Y * and using Hölder’s inequality, for exponents p p and p ( p p )

c ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ε α x ε α L + ε α y 1 , y 1 , y 2 , ϕ + y 1 y 2 ψ p d x d y 1 d y 2 T ε φ ε ( ϕ + y 1 y 2 ψ ) L p ( ω × Y * ) ( c + T ε φ ε L p ( ω × Y * ) + ϕ + y 1 y 2 ψ L p ( ω × Y * ) ) 0 .

The case 1 < p < 2 is analogous, using Hypothesis (H4). Therefore,

a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ( x , y 1 , y 2 , ϕ + y 1 y 2 ψ ) strongly in [ L p ( ω × Y * ) ] N + 1 .

We point out that

b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε b ( x , y 1 , y 2 , ϕ ) strongly in L p ( ω × u Y * ) ,

with analogous arguments. It is left to the reader.

Next, let us take φ = φ ε as a test function in (4.9). Using the aforementioned convergences and Remark 3.13, we will pass to the limit. First, let us suppose β > 1 . Hence, as ε 0 in (4.9), we obtain

ω × Y * a ( x , y 1 , y 2 , ϕ + y 1 y 2 ψ ) ( u + y 1 y 2 u 1 ( ϕ + y 1 y 2 ψ ) ) d x d y 1 d y 2 ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 .

Since C # ( ω × Y * ) is dense in L p ( ω ; W # 1 , p ( Y * ) ) , the aforementioned variational inequality holds for any ψ L p ( ω ; W # 1 , p ( Y * ) ) . Thus, taking ( ϕ , ψ ) = ( u , u 1 ) ± λ ( φ , Ψ ) , λ > 0 , we have

ω × Y * a ( x , y 1 , y 2 , u ± λ φ + y 1 y 2 u 1 ± λ y 1 y 2 Ψ ) ( φ + y 1 y 2 Ψ ) d x d y 1 d y 2 ω × Y * f ˆ φ d x d y 1 d y 2 ,

which implies, as λ 0 , that the pair ( u , u 1 ) satisfies

(4.12) ω × Y * a ( x , y 1 , y 2 , u + y 1 y 2 u 1 ) ( φ + y 1 y 2 Ψ ) d x d y 1 d y 2 = ω × Y * f ˆ φ d x d y 1 d y 2 .

Note that, due to Browder-Minty theorem, the pair ( u , u 1 ) is unique in W 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) R ) . It remains to identify u 1 with the unique solution of the auxiliary problem:

Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) y 1 y 2 ψ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) ,

for each z R N . Observe that taking φ = 0 and treating x ω as a parameter in (4.12), we obtain, a.e. in ω , that

(4.13) Y * a ( x , y 1 , y 2 , u + y 1 y 2 u 1 ) y 1 y 2 Ψ d y 1 d y 2 = 0 , Ψ W # 1 , p ( Y * ) .

Hence, due to the uniqueness of the solutions of Problem (4.10), we conclude that:

u 1 ( x , y 1 , y 2 ) = X x u ( x ) ( y 1 , y 2 ) a.e. ( x , y 1 , y 2 ) ω × Y * .

In order to achieve the N -dimensional limit problem, take Ψ = 0 in (4.12). Thus,

ω × Y * a ( x , y 1 , y 2 , u + y 1 y 2 u 1 ) φ d x d y 1 d y 2 = ω × Y * f ˆ φ d x d y 1 d y 2 .

Defining

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) d y 1 d y 2 and f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 ,

where I N × N is the N -dimensional identity matrix, we obtain the limit equation:

ω A ( x , x u ) x φ d x = ω f ¯ φ d x , φ W 0 1 , p ( ω ) .

From Proposition A.1, the aforementioned problem has a unique solution due to Browder-Minty theorem, which implies the convergence of the solutions u ε to u .

Now, let us suppose β = 1 . Hence, from (4.9), we obtain as ε 0 that:

ω × Y * a ( x , y 1 , y 2 , ϕ + y 1 y 2 ψ ) ( u + y 1 y 2 u 1 ( ϕ + y 1 y 2 ψ ) ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , ϕ ) ( u ϕ ) d x d σ ( y ) ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , h ) ( u ϕ ) d x d σ ( y ) .

One can argue as in (4.12) to see that the aforementioned inequality is equivalent to:

ω × Y * a ( x , y 1 , y 2 , u + y 1 y 2 u 1 ) ( ϕ + y 1 y 2 ψ ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , u ) ϕ d x d σ ( y ) = ω × Y * f ˆ ϕ d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , h ) ϕ d x d σ ( y ) .

Furthermore, applying the Browder-Minty theorem, we obtain existence and uniqueness in W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) R ) , which implies the convergence of the solutions. Now, to obtain the N -dimensional limit problem, we take ψ = 0 rewriting the aforementioned equation as follows:

ω [ A ( x , x u ) x ϕ + B ( x , u ) ϕ ] d x = ω ( f ¯ + H ¯ ) φ d x , ϕ W 0 1 , p ( ω ) ,

where A and f ¯ were previously defined and

B ( x , z ) = u Y * b ( x , y 1 , y 2 , z ) d σ ( y ) and H ¯ = u Y * b ( x , y 1 , y 2 , h ) d σ ( y ) .□

4.2 Case α < 1

In this subsection, we study the weak oscillation case. We show the following result:

Theorem 4.4

Let u ε W 0 l 1 , p ( R ε ) be the sequence of weak solutions of (1.5) for α < 1 and β 1 . Suppose that f ε L p ( R ε ) is such that f ε L p ( R ε ) is uniformly bounded and

T ε f ε f ˆ w e a k l y i n L p ( ω × Y * ) .

Then, there exists unique ( u , u 1 ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) ) such that

T ε u ε u s t r o n g l y i n L p ( ω × Y * ) , T ε x u ε x u + y 1 u 2 w e a k l y i n [ L p ( ω × Y * ) ] N , T ε b u ε u strongly i n L p ( ω × u Y * ) ,

with u 1 y 2 = 0 satisfying

ω × Y A ˜ ( x , y 1 , u + y 1 u 1 ) ( φ + y 1 ψ ) d x d y 1 + υ ( β ) ω × Y B ˜ 0 ( x , y 1 , u ) ϕ d x d y 1 = ω × Y f ˜ φ d x d y 1 d y 2 + υ ( β ) ω × Y B ˜ 0 ( y 1 , h ) ϕ d x d y 1 ,

for all ( φ , ψ ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y ) ) with υ ( 1 ) = 1 and υ ( β ) = 0 for β > 1 , where

A ˜ ( x , y 1 , ξ ) = I N × N 0 0 0 0 g ( y 1 ) a ( x , y 1 , y 2 , ξ ) d y 2 , B ˜ 0 ( y 1 , z ) = b ( x , y 1 , g ( y 1 ) , z ) a n d f ˜ ( x ) = 0 g ( y 1 ) f ˆ ( x , y 1 , y 2 ) d y 2 .

Moreover,

ω [ A ( x , x u ) x ϕ + υ ( β ) B ( x , u ) ϕ ] d x = ω ( f ¯ + υ ( β ) H ¯ ) φ d x , ϕ W 0 1 , p ( ω ) ,

where

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + ( y 1 X z , 0 ) ) d y 1 d y 2 , f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 , B ( x , z ) = Y b ( x , y 1 , g ( y 1 ) , z ) d y 1 , H ¯ ( x ) = Y b ( x , y 1 , g ( y 1 ) , h ( x ) ) d y 1 ,

and, for each z R N , X z is the unique solution of the auxiliary problem:

Y A ˜ ( x , y 1 , z + y 1 X z ) y 1 ψ d y 1 = 0 , ψ W # 1 , p ( Y ) ,

for a.e. x R N , satisfying Y X z d y 1 = 0 .

Proof

We are in condition of applying Theorem 3.7, thanks to Proposition 4.1, which means that there exists ( u , u 1 ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y * ) ) with u 1 y 2 = 0 such that, up to subsequences,

T ε u ε u strongly in L p ( ω × Y * ) , T ε x u ε x u + y 1 u 1 weakly in [ L p ( ω × Y * ) ] N .

Let ϕ W 0 1 , p ( ω ) and ψ C # ( ω × Y ) . Define

φ ε ( x , y ) = ϕ ( x ) + ε α ψ x , x ε α for ( x , y ) R ε .

Note that, by Proposition 3.5,

T ε φ ε ϕ strongly in L p ( ω × Y * ) , T ε φ ε ( ϕ + y 1 ψ ) strongly in [ L p ( ω × Y * ) ] N + 1 .

Arguing as in (4.11), we have that:

ω × Y * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε φ ε a ( x , y 1 , y 2 , ϕ + y 1 ψ ) p d x d y 1 d y 2 0 , as ε 0 .

Take φ = φ ε as a test function in (4.9) and use the aforementioned convergences. Suppose β > 1 . Passing to the limit as ε 0 , we obtain

ω × Y * a ( x , y 1 , y 2 , ϕ + y 1 ψ ) ( u + y 1 u 1 ( ϕ + y 1 ψ ) ) d x d y 1 d y 2 ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 .

Since C # ( ω × Y ) is dense in L p ( ω ; W # 1 , p ( Y ) ) , the aforementioned variational inequality holds for any ψ L p ( ω ; W # 1 , p ( Y ) ) . Moreover, it is equivalent to:

(4.14) ω × Y A ˜ ( x , y 1 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 = ω × Y f ˜ ϕ d x d y 1 ,

where

A ˜ ( x , y 1 , ξ ) = 0 g ( y 1 ) a ( x , y 1 , y 2 , ξ ) d y 2 and f ˜ = 0 g ( y 1 ) f ˆ ( x , y 1 , y 2 ) d y 2 .

We point out that (4.14) has a unique solution in W 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y ) R ) , due to Proposition A.2.

Now, take ϕ = 0 in (4.14). One has

(4.15) ω × Y A ˜ ( x , y 1 , x u + y 1 u 1 ) y 1 ψ d x d y 1 = 0 ,

for all ψ L p ( ω ; W # 1 , p ( Y ) ) . Since C # ( ω × Y ) is dense in L p ( ω ; W # 1 , p ( Y ) ) , we can proceed as in (4.13) to prove that (4.15) is also a uniquely solvable problem. Moreover, one can see that:

u 1 ( x , y 1 ) = X x u ( y 1 ) ,

where X z is the solution of the auxiliary problem:

Y A ˜ ( x , y 1 , z + y 1 X z ) y 1 ψ d y 1 = 0 , ψ W # 1 , p ( Y ) ,

for each z R N . Hence, we rewrite (4.14) as follows:

ω A ( x , x u ) x ϕ d x = ω f ¯ ϕ d x , ϕ W 0 1 , p ( ω ) ,

where

A ( x , ξ ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ξ + y 1 X ξ ) d y 1 d y 2 and f ¯ = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 .

For β = 1 , we can proceed as in the proof of the case α = 1 . We just write the limit problem as:

ω × Y A ˜ ( x , y 1 , x u ) ( x ϕ + y 1 ψ ) d x d y 1 + ω × Y B ˜ 0 ( x , y 1 , u ) ϕ d x d y 1 = ω × Y f ˜ ϕ d x d y 1 + ω × Y B ˜ 0 ( x , y 1 , h ) ϕ d x d y 1 ,

for all ( ϕ , ψ ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y ) ) , where

B ˜ 0 ( x , y 1 , z ) = b ( y 1 , g ( y 1 ) , z ) .

Consequently, the N -dimensional problem for β = 1 is

ω [ A ( x , x u ) x ϕ + B ( x , u ) ϕ ] d x = ω [ f ¯ + H ¯ ] ϕ d x , ϕ W 1 , p ( ω ) ,

where

B ( x , z ) = Y b ( x , y 1 , g ( y 1 ) , z ) d y 1 and H ¯ ( x ) = Y b ( x , y 1 , g ( y 1 ) , h ( x ) ) d y 1 .□

4.3 Case α > 1

Finally, we consider the strong oscillation case. Differently from the previous subsections, we will rewrite (1.5) as follows:

(4.16) R + ε a x , x ε α , y ε , u + ε φ d x d y + R ε a x , x ε α , y ε , u ε φ d x d y + ε β Γ ε b x , x ε α , y ε , u ε φ d S = R ε f ε φ d x d y + ε β Γ ε b x , x ε α , y ε , h φ d S ,

for all φ W 0 l 1 , p ( R ε ) , where

R + ε = ( x , y ) R N + 1 : x ω , ε min x R N g ( x ) = ε g 0 < y < ε g x ε α R ε { ( x , y ) R N + 1 : x ω , 0 < y < ε g 0 } ,

u + ε = u ε R + ε and u ε = u ε R ε .

Before presenting the proof of the main result of this subsection, we need to complete the functional framework in order to be able to pass to the limit in Problem (4.16). We denote by T ε + the unfolding operator of functions defined in R + ε to functions set in ω × Y + * , where

Y + * = { ( y 1 , y 2 ) R N + 1 : y 1 Y , g 0 < y 2 < g ( y 1 ) } .

The operator T ε + also has the properties described in Propositions 3.2 and 3.4.

For the second term on the left-hand side of (4.16), we consider the unfolding operator for oscillating coefficients T ε : R ε ω × Y * given by:

T ε ϕ ( x , y 1 , y 2 ) = ϕ ε α x ε α L + ε α y 1 , ε y 2 for ( x , y 1 , y 2 ) ω 0 ε × Y * 0 for ω 1 ε × Y * ,

where

Y * = Y × ( 0 , g 0 ) .

T ε satisfies analogous properties given by Propositions 3.23.6 with obvious changes.

Remark 4.5

If Π ε : L p ( R ε ) L p ( R ) , R = ω × ( 0 , g 0 ) , is the rescaling operator

Π ε φ ( x , y ) = φ ( x , ε y ) , ( x , y ) R

and T ε : L p ( R ) L p ( R × Y ) is the partial unfolding operator for oscillating coefficients, presented in [16] and defined by:

T ε ψ ( x , y , y 1 ) = ψ ε α x ε α L + ε α y 1 , y for ( x , y , y 1 ) ω 0 ε × ( 0 , g 0 ) × Y , 0 for ( x , y , y 1 ) ω 1 ε × ( 0 , g 0 ) × Y .

Then,

T ε Ψ ( x , y 1 , y 2 ) = T ε [ Π ε Ψ ] ( x , y 1 , y 2 ) .

In Proposition 3.6, the last two convergence are read as:

T ε φ ε φ strongly  in L p ( ω × Y * ) , T ε φ ε φ L p ( ω × Y * ) 0 .

Moreover, a version of Theorem 3.7 becomes as follows:

Proposition 4.6

Let φ ε W 1 , p ( R ε ) be such that φ ε W 1 , p ( R ε ) is uniformly bounded by a positive constant independent of ε . Then, there are φ W 1 , p ( ω ) and φ 1 L p ( R ; W # 1 , p ( Y ) ) such that, up to subsequences,

T ε φ ε φ s t r o n g l y i n L p ( ω × Y * ) , T ε x φ ε x φ + y 1 φ 1 .

Proof

Since φ ε W 1 , p ( R ε ) is uniformly bounded, Proposition 3.6 implies that there exists φ W 1 , p ( ω ) such that

T ε φ ε φ strongly in L p ( ω × Y * ) , T ε φ ε φ L p ( ω × Y * ) 0 .

Let

Z ε ( x , y 1 , y 2 ) = 1 ε α T ε φ ε ( x , y 1 , y 2 ) Y T ε φ ε ( x , y 1 , y 2 ) d y 1 .

Note that, from the Poincaré-Wirtinger inequality,

Z ε L p ( R × Y ) = 1 ε α T ε φ ε Y T ε φ ε ( , y 1 , ) d y 1 L p ( R × Y ) c ε α y 1 T ε φ ε L p ( R × Y ) .

Due to y 1 T ε φ ε = ε α T ε x φ ε , we have

Z ε L p ( R × Y ) c T ε x φ ε L p ( R × Y ) c .

Define

φ ^ ε = Z ε x φ y 1 1 Y Y y 1 d y 1 ,

which has average zero in Y . We have that φ ^ ε L p ( R × Y ) is uniformly bounded, since Z ε L p ( R × Y ) is uniformly bounded. There is φ 1 L p ( R ; W 1 , p ( Y ) ) such that, up to subsequences,

φ ^ ε φ 1 weakly  in L p ( R ; W 1 , p ( Y ) ) ,

that is,

T ε x φ ε x φ + y 1 φ 1 weakly in L p ( R × Y ) .

The periodicity follows from proving that:

R × Y [ Z ε ( x , y 1 + L , y 2 ) Z ε ( x , y 1 , y 2 ) ] ψ ( x , y 1 , y 2 ) d x d y 1 d y 2 0 ,

which is not a difficult task (see, for instance, [7, Theorem 3.1] for details).□

We unfold (4.16), and we ignore the “integration defect” set by item 3.2 of Proposition 3.2 obtaining

(4.17) ω × Y + * a ( x , y 1 , y 2 , T ε + u + ε ) T ε + φ d x d y 1 d y 2 + R × Y a ( x , y 1 , y 2 , T ε u ε ) T ε φ d x d y d y 1 + ε β 1 ω × u Y * b ( x , y 1 , y 2 , T ε b u ε ) T ε b φ d ε d x d ( y ) = ω × Y * T ε f ε T ε φ d x d y 1 d y 2 + ε β 1 ω × u Y * b ( x , y 1 , y 2 , T ε b h ) T ε b φ d ε d x d ( y ) ,

for all φ W 0 l 1 , p ( R ε ) . We point out the term d ε in the integrals on the border. It was introduced in item 2 at Proposition 3.12. Combining such term with Proposition 4.1 for α > 1 , we can prove the main result of this subsection:

Theorem 4.7

Let u ε W 0 l 1 , p ( R ε ) be the sequence of weak solutions of (1.5) for β 1 . Suppose that f ε L p ( R ε ) is such that f ε L p ( R ε ) is uniformly bounded and

T ε f ε f ˆ w e a k l y i n L p ( ω × Y * ) .

Then, there exist ( u , u 1 ) W 0 1 , p ( ω ) × L p ( R ; W # 1 , p ( Y ) ) such that

(4.18) T ε u ε u s t r o n g l y i n L p ( ω ; W 1 , p ( Y * ) ) , T ε u ε x u + y 1 u 1 w e a k l y i n [ L p ( R × Y ) ] N .

If 1 β < α , then

u = h a . e . i n ω ,

with u ε satisfying the convergences (4.18).

If 1 < α β , ( u , u 1 ) is the unique solution of

R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 = ω f ¯ ϕ d x , if β > α o r R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 + ω × Y B ( x , u ) ϕ d x = ω f ¯ ϕ d x + ω B ( x , h ) ϕ d x , if β = α ,

for any ( ϕ , ψ ) W 0 1 , p ( ω ) × L p ( ω ; W # 1 , p ( Y ) ) , where

B ( x , z ) = Y b ( x , y 1 , g ( y 1 ) , z ) y 1 g ( y 1 ) d y 1 , f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 ,

and

u 1 = X x u

where, for each ξ R N , X ξ is the solution of

Y a ( x , y 1 , y 2 , ξ + y 1 X ξ ) y 1 ψ d y 1 = 0 a . e . ( x , y 2 ) R N × ( 0 , g 0 ) , ψ W # 1 , p ( Y ) .

Then, u is the unique solution of

ω A ( x , x u ) x ϕ d x = ω f ¯ ϕ d x i f β > α or ω [ A ( x , x u ) x ϕ + B ( x , u ) ϕ ] d x = ω [ f ¯ + H ¯ ] ϕ d x i f β = α ,

for all ϕ W 0 1 , p ( ω ) , where

A ( x , ξ ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ξ + y 1 X ξ ) d y 1 d y 2 .

Proof

From Propositions 4.1, 3.6, and 4.6, there are u , u W 0 1 , p ( ω ) , a 1 [ L p ( R × Y ) ] N + 1 and u 1 L p ( R ; W 1 , p ( Y ) ) such that, up to subsequences,

T ε u ε u strongly in L p ( ω × Y * ) , a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε + u + ε u 1 weakly in [ L p ( ω × Y + * ) ] N + 1 , a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε u ε a 1 weakly in [ L p ( R × Y ) ] N + 1 , T ε x u ε x u + y 1 u 1 weakly in [ L p ( R × Y ) ] N .

Take φ = φ ( x ) W 0 1 , p ( ω ) in (4.17). Assuming 1 β < α , we multiply (4.17) by ε α β obtaining from Proposition 3.12 and Remark 3.13 that

ω × u Y * b ( x , y 1 , y 2 , u ) φ d d x d σ ( y ) = ω × u Y * b ( x , y 1 , y 2 , h ) φ d d x d σ ( y ) ,

where d ( y 1 ) = g ( y 1 ) 1 + g ( y 1 ) 2 . In particular, if we take φ = u h , it follows from Hypotheses (H3) and (H4) that

u = h a.e. in ω .

Furthermore, also by Propositions 3.6 and 4.6, we have

T ε u ε T ε u L p ( R × Y ) c u ε u L p ( R ε ) c u ε u L p ( R ε ) 0 ,

and then,

u = u a.e. in ω .

Suppose β α . Let ρ [ D ( Y ) ] N , Ψ C 0 ( Q ) , where Q = { ( x , y ) : x ω , g 0 < y < g 1 } . Choose ν D ( Y ) such that y 1 ν = ρ . Define

u ε ( x , y ) = ε α ν x ε α Ψ ˜ x , y ε ( x , y ) R ε ,

where ˜ denotes the extension by zero. Note that u ε is well defined and continuous in R ε . It is not difficult to see that

T ε + u ε 0 strongly in L p ( ω × Y + * ) , T ε + x u ε y 1 ν Ψ strongly in [ L p ( ω × Y + * ) ] N , T ε + u ε y 0 strongly in L p ( ω × Y + * ) .

Take u ε as a test function in (4.17) and pass to the limit to obtain

ω × Y + * u 1 y 1 ν Ψ d x d y 1 d y 2 = 0 .

Then,

0 = ω × Y + * u 1 y 1 ν Ψ d x d y 1 d y 2 = ω × Y × ( g 0 , g 1 ) u ˜ 1 ( x , y 1 , y 2 ) ρ ( y 1 ) Ψ ( x , y 2 ) d x d y 1 d y 2 ,

implying that

Y u ˜ 1 ( x , y 1 , y 2 ) ρ ( y 1 ) d y 1 = 0 a.e. ( x , y 2 ) ω × ( g 0 , g 1 ) .

Thus,

u ˜ 1 = 0 a.e ω × Y × ( g 0 , g 1 ) .

Let ψ C # ( ω × Y * ) and ϕ W 0 1 , p ( ω ) . Define

u ε ( x , y ) = ϕ ( x ) + ε α ψ x , x ε α , y ε = ϕ + ε α ψ ¯ ε .

In order to determine the limit problem, we use the monotonicity of functions a and b . We have

(4.19) 0 R × Y a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε u ε a ε α x ε α L + ε α y 1 , y 1 , y 2 , T u ε ( T ε u ε T ε u ε ) + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b u ε b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε u ε T ε b ( u ε u ε ) d ε d x d σ ( y ) + ω × Y + * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε + u + ε T ε + u + ε d x d y 1 d y 2 0 , by (H3) or (H4) ω × Y + * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε + u + ε T ε + ϕ d x d y 1 d y 2 + ω × Y + * a ε α x ε α L + ε α y 1 y 1 , y 2 , T ε + u + ε T ε + ϕ d x d y 1 d y 2 .

Now, for φ = u ε ϕ in (4.17), let us set

I ε ω × Y + * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε + u + ε T ε + ( u ε ϕ ) d x d y 1 d y 2 + R × Y a ε α x ε α L + ε α y 1 , y 1 , y 2 , T u ε T ε ( u ε ϕ ) d x d y d y 1 + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b u ε T ε b ( u ε ϕ ) d ε d x d ( y ) = ω × Y * T ε f ε T ε ( u ε ϕ ) d x d y 1 d y 2 + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b h T ε b ( u ε ϕ ) d ε d x d ( y ) .

Then, from Proposition 3.12 and Remark 3.13, we obtain

I ε I β = ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 if β > α , ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , h ) ( u ϕ ) d d x d σ ( y ) if β = α ,

as ε 0 . Moreover,

J ε R × Y a ε α x ε α L + ε α y 1 , y 1 , y 2 , T u ε ( T ε u ε T u ε ) d x d y 1 d y 2 ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε u ε T ε b ( u ε u ε ) d ε d x d σ ( y ) + ω × Y + * a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε + u + ε T ε + ϕ d x d y 1 d y 2 J β ,

where

J β = R × Y a ( x , y 1 , y 2 , x ϕ + y 1 ψ ) ( x ( u ϕ ) + y 1 ( u 1 ψ ) ) d x d y 1 d y 2 ω × u Y * b ( x , y 1 , y 2 , ϕ ) ( u ϕ ) d d x d σ ( y ) , if β = α ,

or

J β = R × Y a ( x , y 1 , y 2 , x ϕ + y 1 ψ ) ( x ( u ϕ ) + y 1 ( u 1 ψ ) ) d x d y 1 d y 2 , if β > α .

Furthermore, note that:

L ε = R × Y a ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε u ε ε α T ε x ψ ¯ ε + T ε y 1 ψ ¯ ε , ε α 1 T ε ψ ¯ ε y 2 + ε β 1 ω × u Y * b ε α x ε α L + ε α y 1 , y 1 , y 2 , T ε b u ε T ε b ( ε α ψ ¯ ε ) d ε d x d ( y ) R × Y a 1 ( y 1 ψ , 0 ) = 0 ,

since taking ( u ε ϕ ) as a test function in (4.17) leads us to

R × Y a 1 ( y 1 ψ , 0 ) d x d y 1 d y 2 = 0 , ψ C # ( ω × Y * ) , as ε 0 .

From (4.19), we have

0 I ε + J ε + L ε .

Therefore, when ε 0 ,

I ε + J ε + L ε I β + J β 0 .

When β = α , we obtain

0 ω × Y * f ˆ ( u ϕ ) d x d y 1 d y 2 + ω × u Y * b ( y 1 , y 2 , h ) ( u ϕ ) d d x d σ ( y ) R × Y a ( x , y 1 , y 2 , x ϕ + y 1 ψ ) ( x ( u ϕ ) + y 1 ( u 1 ψ ) ) d x d y 1 d y 2 ω × u Y * b ( x , y 1 , y 2 , ϕ ) ( u ϕ ) d d x d σ ( y ) .

Using that C # ( ω × Y * ) is dense in L p ( R ; W # 1 , p ( Y ) ) , we have that the aforementioned inequality holds for any ψ L p ( R ; W 1 , p ( Y ) ) . Hence, it holds for any ( ϕ , ψ ) W 0 1 , p ( ω ) × L p ( R ; W # 1 , p ( Y ) ) .

Arguing as in the previous subsections, we obtain that the aforementioned variational inequality is equivalent to

R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , u ) ϕ d d x d σ ( y ) = ω × Y * f ˆ ϕ d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , h ) ϕ d d x d σ ( y ) .

We remark that when β > α , the integrals on ω × u Y * will not appear. Hence, one obtains

R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 = ω × Y * f ˆ ϕ d x d y 1 d y 2 , if β > α or R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , u ) ϕ d d x d σ ( y ) = ω × Y * f ˆ ϕ d x d y 1 d y 2 + ω × u Y * b ( x , y 1 , y 2 , h ) ϕ d d x d σ ( y ) , if β = α .

One rewrites the aforementioned expression as follows:

(4.20) R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 = ω f ¯ ϕ d x , if β > α or R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) ( x ϕ + y 1 ψ ) d x d y 1 d y 2 + ω × Y B ( x , u ) ϕ d x = ω f ¯ ϕ d x + ω B ( x , h ) ϕ d x , if β = α ,

where

B ( x , z ) = Y b ( x , y 1 , g ( y 1 ) , z ) y 1 g ( y 1 ) d y 1 and f ¯ ( x ) = Y * f ˆ ( x , y 1 , y 2 ) d y 1 d y 2 .

We point out that the aforementioned equations have unique solution in W 0 1 , p ( ω ) × L p ( R ; W # 1 , p ( Y ) R ) . Indeed, it is due to (H3), (H4) and Proposition A.3.

It remains to identify u 1 . However, if one takes ϕ = 0 in (4.20), then

R × Y a ( x , y 1 , y 2 , x u + y 1 u 1 ) y 1 ψ d x d y 1 d y 2 = 0 , ψ L p ( R ; W # 1 , p ( Y ) ) .

Hence, we can proceed as in the previous subsections obtaining u 1 = X x u where for each ξ R N , X ξ is the auxiliary solution given by:

Y a ( x , y 1 , y 2 , ξ + y 1 X ξ ) y 1 ψ d y 1 = 0 for a.e. y 2 ( 0 , g 0 ) , ψ W # 1 , p ( Y ) .

To obtain the N -dimensional limit problem, we just have to take ψ = 0 in (4.20) obtaining

ω A ( x , x u ) x ϕ d x = ω f ¯ ϕ d x if β > α or ω [ A ( x , x u ) x ϕ + B ( u ) ϕ ] d x = ω [ f ¯ + B ( x , h ) ] ϕ d x if β = α ,

where

A ( x , ξ ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ξ + y 1 X ξ ) d y 1 d y 2 .□

  1. Funding information: JCN has been supported by FAPESP 2022/08112-1 (Brazil); MCP by CNPq 308950/2020-8, and FAPESP 2020/14075-6 and 2020/04813-0 (Brazil).

  2. Conflict of interest: The authors declare no conflict of interest.

Appendix

Here, we prove some results that are necessary to guarantee existence and uniqueness of the solutions of our quasilinear homogenized equations. The well posed of the auxiliary problems follows from the Minty-Browder’s theorem and are left to the interested reader. First, we deal with the limit problem set in Theorem 4.3.

Proposition A.1

Let

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) d y 1 d y 2 ,

where I N × N is the identity matrix N × N dimensional and X z is the unique solution of:

(A1) Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) y 1 y 2 ψ d y 1 d y 2 = 0 , ψ W # 1 , p ( Y * ) ,

with Y * X z d y 1 d y 2 = 0 and for each z R N . Then, A satisfy Hypotheses (H2), (H3), and (H4).

Proof

First, we mention that (A1) has a unique solution thanks to Minty-Browder’s theorem (since it satisfies Hypotheses (H2), (H3), and (H4)). Next, let us take p 2 . Note that for any z R N , it follows from (H3) that, for a.e. x R N ,

Y * ( z , 0 ) + y 1 y 2 X z p c Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) [ ( z , 0 ) + y 1 y 2 X z ] = c Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) ( z , 0 ) c Y * z ( z , 0 ) + y 1 y 2 X z p 2 [ ( z , 0 ) + y 1 y 2 X z ] c z p Y * p + 1 p Y * ( z , 0 ) + y 1 y 2 X z p .

Thus, there is a constant c 1 > 0 such that, for a.e. x R N ,

(A2) Y * ( z , 0 ) + y 1 y 2 X z p c 1 z p .

Let us prove that the solutions are continuous with respect to the parameter z . Let z 0 R N and consider a ball centered in z 0 with radius δ > 0 , B δ ( z 0 ) . We have to prove that for any z B δ ( z 0 ) , there is λ > 0 such that X z B λ ( X z 0 ) the ball centered in X z 0 in W # 1 , p ( Y * ) .

Now, due to (H3) or (H4), (A1), (A2), and Young’s inequality, we obtain for a.e. x R N

(A3) Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p c Y * [ a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) a ( x , y 1 , y 2 , ( z 0 , 0 ) + y 1 y 2 X z 0 ) ] [ ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 ] = c Y * [ a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) a ( x , y 1 , y 2 , ( z 0 , 0 ) + y 1 y 2 X z 0 ) ] ( z z 0 , 0 ) c z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 c z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 1 c z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p 1 p Y * ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 1 p c 2 z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p 1 p ( z p + z 0 p ) 1 p 1 p Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p + c 2 p p ( z p + z 0 p ) z z 0 p .

Consequently, since z B δ ( z 0 ) , we have

1 p Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p c 2 ( z p + z 0 p ) z z 0 p c z z 0 p .

Now, let 1 < p 2 . One obtains from (H4) and the Young’s inequality that

Y * ( z , 0 ) + y 1 y 2 X z p p μ 2 p 2 Y * ( z , 0 ) + y 1 y 2 X z 2 ( 1 + ( z , 0 ) + y 1 y 2 X z ) p 2 + 2 p 2 μ 2 2 p Y * ( 1 + ( z , 0 ) + y 1 y 2 X z ) p ,

for any constant μ > 0 . In this case, we have

1 p Y * ( z , 0 ) + y 1 y 2 X z 2 ( 1 + ( z , 0 ) + y 1 y 2 X z ) p 2 c ( 1 + z p ) .

Therefore, if μ is big enough, we obtain

Y * ( z , 0 ) + y 1 y 2 X z p c ( 1 + z p ) .

Next, we also prove that X z and X z 0 are close, if z and z 0 are close. This will hold similarly to the case p 2 . Observe that

Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 2 ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 p 2 × Y * ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 p 2 .

Furthermore,

Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 2 ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 c Y * [ a ( x , x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) a ( x , x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) ] ( z z 0 , 0 ) c z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p 1 c z z 0 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p 1 p .

Putting together the two previous inequalities,

c 4 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p z z 0 p 2 Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p p 2 p Y * ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 p 2 ,

for a constant c 4 > 0 . Thus,

Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p p p 1 2 c z z 0 p 2 ( 1 + z + z p + z 0 + z 0 p ) ,

which implies

Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p c z z 0 p p + 1

for z B δ ( z 0 ) . In summary, one concludes, for a.e. x R N ,

Y * y 1 y 2 X z p c ( 1 + z p ) , p > 1

and

Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p c z z 0 p p 1 , p 2 z z 0 p p + 1 , 1 < p 2 .

Hence, we can conclude, using the aforementioned relationships, that, for a.e. x R N ,

A ( x , z ) = I N × N 0 0 0 Y * a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) d y 1 d y 2 c Y * ( z , 0 ) + y 1 y 2 X z ( 1 + ( z , 0 ) + y 1 y 2 X z ) p 2 , p 2 , Y * ( z , 0 ) + y 1 y 2 X z p 1 , 1 < p < 2 , c ( 1 + z p ) .

Also, from (H3) and (H4), for a.e. x R N ,

A ( x , z ) A ( x , z 0 ) Y * [ a ( x , y 1 , y 2 , ( z , 0 ) + y 1 y 2 X z ) a ( x , y 1 , y 2 , ( z 0 , 0 ) + y 1 y 2 X z 0 ) ] c Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 ( 1 + ( z , 0 ) + y 1 y 2 X z + ( z 0 , 0 ) + y 1 y 2 X z 0 ) p 2 , p 2 , Y * ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 p 1 , 1 < p < 2 .

Arguing as earlier, we obtain, by the Hölder’s inequality, for a.e. x R N ,

A ( x , z ) A ( x , z 0 ) c ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 L p ( Y * ) ( 1 + ( z , 0 ) + y 1 y 2 X z L p ( Y * ) p + ( z 0 , 0 ) + y 1 y 2 X z 0 L p ( Y * ) p ) 1 p , p 2 , ( z z 0 , 0 ) + y 1 y 2 X z y 1 y 2 X z 0 L p ( Y * ) , 1 < p < 2 , z z 0 1 p 1 , p 2 , z z 0 1 p + 1 , 1 < p < 2 ,

which proves the continuity of A ( ) .

Let p 2 . We will show that for all z 1 , z 2 R N , there is a constant c > 0 such that

z 1 z 2 p c ( A ( x , z 1 ) A ( x , z 2 ) ) ( z 1 z 2 ) for a.e. x R N .

Suppose that the aforementioned inequality does not hold. Then, for any k > 0 , there are z 1 , z 2 R N such that

z 1 z 2 p > k ( A ( x , z 1 ) A ( x , z 2 ) ) ( z 1 z 2 ) .

From Inequality (A3), we have

Y * ( z 1 z 2 , 0 ) + y 1 y 2 X z 1 y 1 y 2 X z 2 p c Y * [ a ( x , y 1 , y 2 , ( z 1 , 0 ) + y 1 y 2 X z 1 ) a ( x , y 1 , y 2 , ( z 2 , 0 ) + y 1 y 2 X z 2 ) ] ( z 1 z 2 , 0 ) = c ( A ( x , z 1 ) A ( x , z 2 ) ) ( z 1 z 2 ) c k z 1 z 2 p .

Since k is arbitrary, we can conclude that

( z 1 z 2 , 0 ) + y 1 y 2 X z 1 y 1 y 2 X z 2 = 0 .

Let ϕ C 0 ( Y * ) and choose ψ [ C 0 ( Y * ) ] N + 1 such that div ψ = ϕ . Note that

Y * [ y 1 y 2 X z 1 y 1 y 2 X z 2 ] ψ = Y * ( X z 1 X z 2 ) div ψ = Y * ( X z 1 X z 2 ) ϕ .

Also,

Y * [ z 1 z 2 ] ψ = Y * y 1 , y 2 [ ( z 1 z 2 , 0 ) ( y 1 , y 2 ) ] ψ = Y * [ ( z 1 z 2 , 0 ) ( y 1 , y 2 ) ] div ψ = Y * [ ( z 1 z 2 , 0 ) ( y 1 , y 2 ) ] ϕ ,

which implies that

X z 1 X z 2 + [ ( z 1 z 2 , 0 ) ( y 1 , y 2 ) ] = 0 .

Using that X z 1 and X z 2 have zero average in Y * , we conclude that

( z 1 z 2 ) Y * y 1 = 0

and z 1 = z 2 , which is impossible.

The case 1 < p < 2 is analogous and is left to the reader.□

The next results state analogous properties for the limit operators introduced in Theorems 4.4 and 4.7. We do not show them here since their proof are completely analogous to the aforementioned one. Any way, we state the proposition to the convenience of the reader.

Proposition A.2

The operators A ˜ and A , from Theorem4.4, satisfy Hypothesis (H2), (H3), and (H4).

Proposition A.3

The operators B and A , from Theorem4.7, satisfies Hypothesis (H2), (H3), and (H4).

References

[1] M. Anguiano and F. J. Z. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys. 68 (2017), 45, doi: https://doi.org/10.1007/s00033-017-0790-z.10.1007/s00033-017-0790-zSearch in Google Scholar

[2] J. M. Arrieta, A. N. Carvalho, M. C. Pereira, and R. P. Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal. 74 (2011), 5111–5132. 10.1016/j.na.2011.05.006Search in Google Scholar

[3] J. M. Arrieta, J. C. Nakasato, and M. C. Pereira, The p-Laplacian operator in thin domains: The unfolding approach, J. Differential Equations 274 (2021), no. 15, 1–34. 10.1016/j.jde.2020.12.004Search in Google Scholar

[4] J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, J. de Mathématiques Pures et Appliquées 96 (2011), 29–57. 10.1016/j.matpur.2011.02.003Search in Google Scholar

[5] J. M. Arrieta and M. C. Pereira, The Neumann problem in thin domains with very highly oscillatory boundaries, J. Math. Anal. Appl. 444 (2013), 86–104. 10.1016/j.jmaa.2013.02.061Search in Google Scholar

[6] J. M. Arrieta and M. Villanueva-Pesqueira, Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary, SIAM J. Math. Anal. 48 (2016), 1634–1671. 10.1137/15M101600XSearch in Google Scholar

[7] J. M. Arrieta and M. Villanueva-Pesqueira, Thin domains with non-smooth oscillatory boundaries, J. Math. Anal. Appl. 446 (2017), 130–164. 10.1016/j.jmaa.2016.08.039Search in Google Scholar

[8] S. Aiyappan, A. K. Nandakumaran, and R. Prakash. Generalization of unfolding operator for highly oscillating smooth boundary domains and homogenization. Calc. Var. 57 (2018), 86. 10.1007/s00526-018-1354-6Search in Google Scholar

[9] P. Bella, E. Feireisl, and A. Novotny, Dimension reduction for compressible viscous fluids, Acta Appl. Math. 134 (2014), 111–121. 10.1007/s10440-014-9872-5Search in Google Scholar

[10] M. F. Bidaut-Verón, Liouville results and asymptotics of solutions of a quasilinear elliptic equation with supercritical source gradient term. Adv. Nonlinear Stud. 21 (2021), no. 1, 57–76. 10.1515/ans-2020-2109Search in Google Scholar

[11] D. Blanchard, L. Carbone, and A. Gaudiello, Homogenization of a monotone problem in a domain with oscillating boundary, ESAIM Math. Model. Numer. Anal. 33 (1999), no. 5, 1057–1070. 10.1051/m2an:1999134Search in Google Scholar

[12] G. Cardone, C. Perugia, and M. Villanueva-Pesqueira, Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integr. Equ. Oper. Theory 93 (2021), 24. 10.1007/s00020-021-02643-7Search in Google Scholar

[13] J. Casado-Díaz, F. Murat, and A. Sili, Homogenization and correctors for monotone problems in cylinders of small diameter, Ann. I. H. Poincaré - AN 30 (2013), 519–545. 10.1016/j.anihpc.2012.10.004Search in Google Scholar

[14] D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal. 40 (2008), 1585–1620. 10.1137/080713148Search in Google Scholar

[15] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal. 44 (2012), 718–760. 10.1137/100817942Search in Google Scholar

[16] D. Cioranescu, A. Damlamian and G. Griso. The Periodic Unfolding Method, Theory and Applications to Partial Differential Problems, Springer Nature, Singapore, 2018. 10.1007/978-981-13-3032-2Search in Google Scholar

[17] T. D. Do, L. X. Truong, and N. N. Trong, Up-to-boundary pointwise gradient estimates for very singular quasilinear elliptic equations with mixed data, Adv. Nonlinear Stud. 21 (2021), no. 4, 789–808. 10.1515/ans-2021-2139Search in Google Scholar

[18] P. Donato and G. Moscariello. On the homogenization of some nonlinear problems in perforated domains, Rend. Semin. Mat. Univ. Padova 84 (1990), 91–108. Search in Google Scholar

[19] A. Gaudiello and K. Hamdache, The polarization in a ferroelectric thin film: local and nonlocal limit problems, ESAIM Control Optim. Calc. Var. 19 (2013), 657–667. 10.1051/cocv/2012026Search in Google Scholar

[20] A. Gaudiello and K. Hamdache, A reduced model for the polarization in a ferroelectric thin wire. NoDEA Nonlinear Differ. Equ. Appl. 22 (2015), no. 6, 1883–1896. 10.1007/s00030-015-0348-8Search in Google Scholar

[21] A. Gaudiello and T. A. Mel’nyk, Homogenization of a nonlinear monotone problem with a big nonlinear Signorini boundary interaction in a domain with highly rough boundary, Nonlinearity 32 (2019), 12, 5150–5169. 10.1088/1361-6544/ab46e9Search in Google Scholar

[22] A. Gaudiello and T. A. Mel’nyk, Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary, J. Differential Equations 265 (2018), 5419–5454. 10.1016/j.jde.2018.07.002Search in Google Scholar

[23] J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures et Appl. (9) 71 (1992), no. 1, 33–95. Search in Google Scholar

[24] J. L. Lions, Quelques methodes de résolution des problémes aux limites non lineáires, Dunod, Paris, 1969. Search in Google Scholar

[25] T. A. Mel’nyk and A. V. Popov, Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness, Nonlinear Oscil. 13 (2010), 57–84. 10.1007/s11072-010-0101-5Search in Google Scholar

[26] E. Miroshnikova, Pressure-driven flow in a thin pipe with rough boundary, Z. Angew. Math. Phys. 71 (2020), no. 4, 1–20. 10.1007/s00033-020-01355-zSearch in Google Scholar

[27] J. C. Nakasato, I. Pažanin, and M. C. Pereira, Roughness-induced effects on the convection-diffusion-reaction problem in a thin domain, Appl. Anal. 100 (2021), 1107–1120. 10.1080/00036811.2019.1634260Search in Google Scholar

[28] J. C. Nakasato, I. Pažanin, and M. C. Pereira, Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness, Z. Angew. Math. Phys. 72 (2021), no. 1, 1–17. 10.1007/s00033-020-01436-zSearch in Google Scholar

[29] J. C. Nakasato and M. C. Pereira, A classical approach for the p-Laplacian in oscillating thin domains. Topol. Meth. Nonlinear Anal. 58 (2021), no. 1, 209–231. 10.12775/TMNA.2021.009Search in Google Scholar

[30] J. C. Nakasato and M. C. Pereira, An optimal control problem in a tubular thin domain with rough boundary, J. Diff. Equations 313 (2022), 188–243. 10.1016/j.jde.2021.12.021Search in Google Scholar

[31] J. C. Nakasato and M. C. Pereira. The p-Laplacian in thin channels with locally periodic roughness and different scales, Nonlinearity 35 (2022), 2474–2512. 10.1088/1361-6544/ac62e0Search in Google Scholar

[32] A. Nogueira, J. C. Nakasato, and M. C. Pereira, Concentrated reaction terms on the boundary of rough domains for a quasilinear equation, Appl. Math. Lett. 102 (2020), 106120, doi: https://doi.org/10.1016/j.aml.2019.106120. 10.1016/j.aml.2019.106120Search in Google Scholar

[33] M. C. Pereira, Parabolic problems in highly oscillating thin domains, Annali di Matematica Pura ed Applicata 194 (2015), 1203–1244. 10.1007/s10231-014-0421-7Search in Google Scholar

[34] M. C. Pereira and R. P. daSilva, Correctors for the Neumann problem in thin domains with locally periodic oscillatory structure, Quarter. Appl. Math. 73 (2015), 537–552. 10.1090/qam/1388Search in Google Scholar

[35] M. C. Pereira and J. D. Rossi, Nonlocal problems in thin domains, J. Diff. Equations 263 (2017), 1725–1754. 10.1016/j.jde.2017.03.029Search in Google Scholar

[36] M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Diff. Equations 173 (2001), no. 2, 271–320. 10.1006/jdeq.2000.3917Search in Google Scholar

[37] G. Raugel, Dynamics of Partial Differential Equations on Thin Domains, Lecture Notes in Mathematics, vol. 1609, Springer-Verlag, Berlin Heidelberg, 1995. 10.1007/BFb0095241Search in Google Scholar

[38] R. P. Silva, Global attractors for quasilinear parabolic equations on unbounded thin domains. Monatsh Math 180 (2016), 649–660. 10.1007/s00605-016-0902-4Search in Google Scholar

[39] E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin Heidelberg, 1980. Search in Google Scholar

[40] P. Tabeling. Introduction to Microfluidics, Oxford University Press, Oxford, UK, 2005. 10.1093/oso/9780198568643.001.0001Search in Google Scholar

[41] L. Tartar. The General Theory of Homogenization, Springer-Verlag, Berlin Heidelberg, 2009. Search in Google Scholar

Received: 2023-01-05
Revised: 2023-07-30
Accepted: 2023-08-07
Published Online: 2023-09-11

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Asymptotic properties of critical points for subcritical Trudinger-Moser functional
  3. The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation
  4. On some dense sets in the space of dynamical systems
  5. Sharp profiles for diffusive logistic equation with spatial heterogeneity
  6. Generic properties of the Rabinowitz unbounded continuum
  7. Global bifurcation of coexistence states for a prey-predator model with prey-taxis/predator-taxis
  8. Multiple solutions of p-fractional Schrödinger-Choquard-Kirchhoff equations with Hardy-Littlewood-Sobolev critical exponents
  9. Improved fractional Trudinger-Moser inequalities on bounded intervals and the existence of their extremals
  10. The existence of infinitely many boundary blow-up solutions to the p-k-Hessian equation
  11. A priori bounds, existence, and uniqueness of smooth solutions to an anisotropic Lp Minkowski problem for log-concave measure
  12. Existence of nonminimal solutions to an inhomogeneous elliptic equation with supercritical nonlinearity
  13. Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem
  14. Gagliardo-Nirenberg-type inequalities using fractional Sobolev spaces and Besov spaces
  15. Ground states of Schrödinger systems with the Chern-Simons gauge fields
  16. Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries
  17. A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
  18. A modified Picone-type identity and the uniqueness of positive symmetric solutions for a prescribed mean curvature problem
  19. On a version of hybrid existence result for a system of nonlinear equations
  20. Special Issue: Geometric PDEs and applications
  21. Preface for the special issue on “Geometric Partial Differential Equations and Applications”
  22. Convex hypersurfaces with prescribed Musielak-Orlicz-Gauss image measure
  23. Total mean curvatures of Riemannian hypersurfaces
  24. On degenerate case of prescribed curvature measure problems
  25. A curvature flow to the Lp Minkowski-type problem of q-capacity
  26. Aleksandrov reflection for extrinsic geometric flows of Euclidean hypersurfaces
  27. A note on second derivative estimates for Monge-Ampère-type equations
  28. The Lp chord Minkowski problem
  29. Widths of balls and free boundary minimal submanifolds
  30. Smooth approximation of twisted Kähler-Einstein metrics
  31. The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
  32. A Carleman inequality on product manifolds and applications to rigidity problems
  33. Asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity
  34. Pinched hypersurfaces are compact
  35. The spinorial energy for asymptotically Euclidean Ricci flow
  36. Geometry of CMC surfaces of finite index
  37. Capillary Schwarz symmetrization in the half-space
  38. Regularity of optimal mapping between hypercubes
  39. Special Issue: In honor of David Jerison
  40. Preface for the special issue in honor of David Jerison
  41. Homogenization of oblique boundary value problems
  42. A proof of a trace formula by Richard Melrose
  43. Compactness estimates for minimizers of the Alt-Phillips functional of negative exponents
  44. Regularity properties of monotone measure-preserving maps
  45. Examples of non-Dini domains with large singular sets
  46. Sharp inequalities for coherent states and their optimizers
  47. Gradient estimates and the fundamental solution for higher-order elliptic systems with lower-order terms
  48. Propagation of symmetries for Ricci shrinkers
  49. Linear extension operators for Sobolev spaces on radially symmetric binary trees
  50. The Neumann problem on the domain in 𝕊3 bounded by the Clifford torus
  51. On an effective equation of the reduced Hartree-Fock theory
  52. Polynomial sequences in discrete nilpotent groups of step 2
  53. Integral inequalities with an extended Poisson kernel and the existence of the extremals
  54. On singular solutions of Lane-Emden equation on the Heisenberg group
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ans-2023-0101/html
Scroll to top button