Home Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem
Article Open Access

Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem

  • Lin Chen , Hui-Sheng Ding , Benniao Li EMAIL logo and Jianghua Ye
Published/Copyright: July 9, 2023

Abstract

In this article, we consider the following Schrödinger-Poisson problem:

ε 2 Δ u + V ( y ) u + Φ ( y ) u = u p 1 u , y R 3 , Δ Φ ( y ) = u 2 , y R 3 ,

where ε > 0 is a small parameter, 1 < p < 5 , and V ( y ) is a potential function. We construct multi-peak solution concentrating at the critical points of V ( y ) through the Lyapunov-Schmidt reduction method. Moreover, by using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schödinger-Poisson system.

MSC 2010: 35J15; 35J20

1 Introduction

From the point view of Quantum Mechanics, the Schrödinger-Poisson system describes the mutual interactions of many particles [29]. The behaviour of a single particle of mass m > 0 can be described by the linear Schrödinger equation:

i W t = 2 m Δ W + a ( y ) W + Φ ( y , t ) W , y R 3 , t R ,

where i is the imaginary unit, Δ is the Laplacian operator, is the Planck constant, and Φ : R 3 × R R . In contrast to the single-particle case, in the presence of many particles, we can model the effect of mutual interactions by introducing a nonlinear term. Then one leads to a non-linear equation of the form

i W t = 2 m Δ W + a ( y ) W + Φ ( y , t ) W W p 1 W , y R 3 , t R ,

with 1 < p < 5 . If the particle moves in its own gravitational field, which is generated by the probability density of the particle via the Newtonian field equation, then the potential

Φ ( y , t ) = 1 4 π R 3 W ( z , t ) 2 y z d z

is a solution of the Poisson equation:

Δ y Φ = W 2 .

We look for standing-wave solutions with the form W ( y , t ) = u ( y ) e i ϖ t , ϖ > 0 , y R 3 , t R , then the system becomes

(1.1) ε 2 Δ u + V ( y ) u + Φ ( y ) u = u p 1 u , y R 3 , Δ Φ ( y ) = u 2 , y R 3 ,

where ε 2 = 2 m and V ( y ) = a ( y ) + ϖ . System (1.1) also described the interaction of a charge particle with an electromagnetic field [6,10,11].

Mathematically, many results on existence of solutions for system (1.1) are established. For a fixed constant ε > 0 , these works [10,11,25] studied the existence of solutions for system (1.1) when the function V ( y ) is a constant-valued function, while the existence of solutions of Schrödinger-Poisson system with non-constant potential functions V ( y ) was taken into consideration in [5]. On the other hand, there are a lot of results on the existence of solutions for the singularly perturbed problem (1.1), that is, ε is a small parameter. In [24], Ruiz proved that for 1 < p < 11 7 , system (1.1) possesses a family of solutions concentrating around a sphere as ε 0 when V = 1 . In [16,18], the authors investigated the existence of solutions to the Schrödinger-Poisson problem and the solutions concentrate on the sphere when the weight function is radially symmetric. The single-peak solution of the Schrödinger-Poisson problem was studied in [17] and the cluster solutions for system (1.1) was constructed in [26]. More results about the Schrödinger-Poisson system can also refer to [1,2,4,7,1316,21,27] and the references therein.

It is known that the non-degeneracy of solutions is also an important property in the theory of differential equations when one deals with the stability or instability of the solutions. On the other hand, the non-degenerate nature of the solutions can be used to prove the existence results of solutions through the famous Lyapunov-Schmidt reduction procedure. However, to the best of our knowledge, the non-degeneracy of solutions for the Schrödinger-Poisson problem has not been investigated. Here, we focus on the non-degenerate behaviour of a class of concentrating solutions to (1.1). For simplicity, we suppose V satisfies:

  1. V ( y ) C 2 ( R 3 , R ) , 0 < V 0 V ( y ) V 1 ;

  2. V ( y ) has m non-degenerate critical points p 1 , , p m .

In this article, our main concern is the non-degeneracy of peak solutions for Schrödinger-Poisson systems with non-degenerate potentials. However, it is needed to note that there are some interesting results on the existence of peak solutions for related problems with degenerate potentials, see [22,23] and the references therein. Lu and Wei [22] studied concentrated positive bound states of nonlinear Schrödinger equations with totally degenerate potentials, and showed how exactly the total degeneracy of potentials can affect the existence and properties of solutions. Luo et al. [23] investigated the existence and uniqueness of normalized solutions for Bose-Einstein condensates with degenerate potentials.

We will use the unique ground state w of

Δ w + w = w p , w > 0 , in R 3 , w ( 0 ) = max y R 3 w ( y ) , w H 1 ( R 3 )

to build up the approximate solution for system (1.1). As shown in [3,19], w ( y ) = w ( y ) satisfies

w ( r ) < 0 , lim r r e r w ( r ) = C > 0 , lim r w ( r ) w ( r ) = 1 .

Moreover, w ( y ) is non-degenerate, that is,

Kerl = span w y i , i = 1 , 2 , 3 ,

where the operator is given by, for any φ H 1 ( R 3 ) ,

φ = Δ φ + φ p w p 1 φ .

Fixing x R 3 , we denote

U ε , x ( y ) ( V ( x ) ) 1 p 1 w V ( x ) ε ( y x ) .

The existence of multi-peak solutions for (1.1) can be established following by the similar way with the work in [17], and the proof will be omitted here.

Theorem 1.1

If V ( y ) satisfies ( V 1 ) and ( V 2 ) , then there exist θ > 0 and ε 0 > 0 such that for any ε ( 0 , ε 0 ] , system (1.1) has a solution of the form

(1.2) u ε = j = 1 m U ε , x ε , j + ω ε

for some x ε , j B θ ( p j ) , and ω ε ε = O ε 5 2 , where u ε 2 R 3 ( ε 2 u 2 + V ( y ) u 2 ) d y .

Remark 1.2

The assumption on V ( y ) can be weaken in Theorem 1.1. In fact, the result holds when Condition ( V 2 ) is substituted by the degenerate condition, that is, there exists an even integer n [ 4 , ] such that p j is a degenerate local minimum( or maximum) of V ( y ) and

D k V ( p j ) = 0 , k = 1 , 2 , , n 1 ; j = 1 , 2 , , m and D n V ( p j ) [ x ] = i = 1 3 a i , j x i n ,

where a i , j = n V ( p j ) x i n and a i , j > 0 (or a i , j < 0 ).

Next, we will study the non-degeneracy of solution u ε . Define

A ε v ε 2 Δ v + ( V ( y ) + Φ u ε p u ε p 1 ) v + 1 2 π R 3 u ε ( z ) v ( z ) y z d z u ε

for any v H 1 ( R 3 ) . Inspired by the non-degeneracy of solution for Schrödinger equation in [28], we have the following non-degeneracy result through using the blow-up analysis and the local Pohozaev identities:

Theorem 1.3

If V ( y ) satisfies ( V 1 ) and ( V 2 ) , v ε satisfies A ε v ε = 0 , then v ε = 0 for sufficiently small ε > 0 .

Remark 1.4

Theorems 1.1 and 1.3 hold when the dimension N satisfies 3 < N 6 .

Following with [8], we argued by contradiction. By the linearity of the operator A ε , we can assume that v ε L ( R 3 ) = 1 . For the estimates of v ε near the non-degenerate points, we can use the blow-up analysis and local Pohozaev identities, while we will use the comparison principle to get the estimates away from these points.

Before closing this section, we will point out the difficulties in this article. Compared with the classical Schrödinger equation, there is a more non-local term in Schrödinger-Poisson system (1.1). The non-local term brings in much more difficulties when we study the non-degeneracy of the multi-peak solution with the form (1.2). For example, there exist two double-volume integrals in the local Pohozaev identities (2.5). To deal with these two double-volume integrals, we need to estimate accurately and skilfully. On the other hand, much more difficulties are brought by the non-local term as well when we estimate v ε and v ε , where v ε satisfies (3.2).

Our article is organized as follows. In Section 2, we will carry out some basic results to apply in the proof of the main theorem further. In Section 3, we will give the proof of Theorem 1.3. In the sequel, we will use C and σ to denote various generic positive constants and small positive constants, respectively.

2 Preliminaries

In this section, we will give some useful results to apply further in the proof. For every u H 1 ( R 3 ) , it follows from Lax-Milgram theorem that there exists a unique Φ = Φ u D 1 , 2 ( R 3 ) such that Δ Φ = u 2 , where

(2.1) Φ u ( x ) = 1 4 π R 3 u 2 ( z ) x z d z .

The properties of Φ u are as follows, which can be proved similar to Lemma 2.1 [9].

Lemma 2.1

For any u , v H 1 ( R 3 ) , we have

  1. Φ u D 1 , 2 ( R 3 ) 1 S 1 2 u L 12 5 ( R 3 ) 2 ,

  2. Φ u Φ v D 1 , 2 ( R 3 ) 1 S 1 2 u 2 v 2 L 6 5 ( R 3 ) , where S inf u D 1 , 2 ( R 3 ) u L 6 ( R 3 ) = 1 R 3 u 2 d x .

Next, we give some important estimates. The following result can be found in Lemma 3.2 [12], which can be used later.

Lemma 2.2

For every α { 1 , , N 1 } and f : R N R such that ( 1 + y α + 1 ) f L 1 ( R N ) L ( R N ) , set

Ψ α [ f ] ( y ) = R N f ( z ) y z α d z .

Then there exist two positive constants C ( α , f ) and C ( α , f ) such that

Ψ α [ f ] ( y ) C ( α , f ) y α C ( α , f ) y α + 1 , y 0 .

Corollary 2.3

Suppose f satisfies the condition in Lemma 2.2, then there exists a positive constant C ( α , f ) such that

(2.2) Ψ α [ f ] ( y ) C ( α , f ) y α , y 0 .

Proof

When y 1 , (2.2) holds obviously by Lemma 2.2.

On the other hand, when y 1 and y 0 , we have

(2.3) B y ( y ) f ( z ) y z α d z f L ( R N ) B y ( 0 ) 1 x α d x C f L ( R N ) 1 y α

and

(2.4) R N \ B y ( y ) f ( z ) y z α d z 1 y α R N f ( z ) d z = f L 1 ( R N ) 1 y α .

It follows from (2.3) and (2.4) that (2.2) holds.□

Lemma 2.4

(Pohozaev identities) If u ε is a solution of

ε 2 Δ u ε + V ( y ) u ε + Φ u ε u ε = u ε p 1 u ε , in R 3

and v ε is a solution of

ε 2 Δ v ε + V ( y ) v ε + Φ u ε v ε + 1 2 π u ε R 3 u ε ( z ) v ε ( z ) y z d z = p u ε p 1 v ε ,

then it holds that, for any Ω R 3 ,

(2.5) Ω V ( y ) y i u ε v ε d y = ε 2 Ω u ε n v ε y i + v ε n u ε y i d S + ε 2 Ω u ε v ε n i d S Ω ( u ε p 1 u ε V ( y ) u ε ) v ε n i d S 1 4 π Ω R 3 ( z i y i ) u ε 2 ( z ) y z 3 d z u ε v ε d y + Ω Φ u ε u ε v ε n i d S 1 4 π Ω R 3 ( z i y i ) u ε ( z ) v ε ( z ) y z 3 d z u ε 2 d y + 1 4 π Ω R 3 u ε ( z ) v ε ( z ) y z d z u ε 2 n i d S ,

where n is the outward unit normal of Ω and n = ( n 1 , n 2 , n 3 ) .

Proof

Since

( ε 2 Δ u ε + V ( y ) u ε + Φ u ε u ε ) v ε y i = u ε p 1 u ε v ε y i

and

ε 2 Δ v ε + V ( y ) v ε + Φ u ε v ε + 1 2 π u ε R 3 u ε ( z ) v ε ( z ) y z d z u ε y i = p u ε p 1 v ε u ε y i ,

by the divergence theorem, we have

(2.6) ε 2 Ω Δ u ε v ε y i + Δ v ε u ε y i d y = Ω V ( y ) u ε v ε y i + v ε u ε y i d y Ω Φ u ε u ε v ε y i + v ε u ε y i d y + Ω u ε p 1 u ε v ε y i + p u ε p 1 v ε u ε y i d y 1 2 π Ω R 3 u ε ( z ) v ε ( z ) y z d z u ε ( y ) u ε y i d y = Ω V ( y ) y i u ε v ε d y Ω V ( y ) u ε v ε n i d S + Ω Φ u ε y i u ε v ε d y Ω Φ u ε u ε v ε n i d S + Ω u ε p 1 u ε v ε n i d S + 1 4 π Ω R 3 ( z i y i ) u ε ( z ) v ε ( z ) y z 3 d z u ε 2 d y 1 4 π Ω R 3 u ε ( z ) v ε ( z ) y z d z u ε 2 n i d S = Ω ( u ε p 1 u ε V ( y ) u ε ) v ε n i d S + Ω V ( y ) y i u ε v ε d y Ω Φ u ε u ε v ε n i d S + 1 4 π Ω R 3 ( z i y i ) u ε 2 ( z ) y z 3 d z u ε v ε d y + 1 4 π Ω R 3 ( z i y i ) u ε ( z ) v ε ( z ) y z 3 d z u ε 2 d y 1 4 π Ω R 3 u ε ( z ) v ε ( z ) y z d z u ε 2 n i d S .

By using integration by parts, we obtain

Ω Δ u ε v ε y i d y = l = 1 3 Ω u ε y l 2 v ε y i y l d y + Ω u ε n v ε y i d S .

Similarly, we have

Ω Δ v ε u ε y i d y = l = 1 3 Ω v ε y l 2 u ε y i y l d y + Ω v ε n u ε y i d S .

Thus,

(2.7) ε 2 Ω Δ u ε v ε y i + Δ v ε u ε y i d y = ε 2 l = 1 3 Ω y i u ε v ε y l y l d y ε 2 Ω u ε n v ε y i + v ε n u ε y i d S = ε 2 Ω u ε v ε n i d S ε 2 Ω u ε n v ε y i + v ε n u ε y i d S .

The result follows from (2.6) and (2.7).□

3 The non-degeneracy result

In this section, we will prove that the solution with the form (1.2) of system (1.1) is non-degenerate. By the similar way with [8], we can prove the following results, which will be used later.

Lemma 3.1

Assume that u ε is a multi-peak solution of (1.1) with the form (1.2). Then there exist λ ( 0 , V 0 ) and C > 0 , such that

ω ε L ( R 3 ) = o ( 1 ) , ω ε ( y ) C j = 1 m e λ y x ε , j ε , for y R 3 ,

and

ω ε ( y ) C e λ d 4 ε , for y B d ( x ε , j ) ,

where 0 < d 1 4 min h j p h p j .

According to Lemma 3.1, we have

(3.1) u ε ( y ) C j = 1 m e λ y x ε , j ε , for y R 3

and

u ε ( y ) C e λ d 4 ε , for y B d ( x ε , j ) .

Proposition 3.2

Assume that u ε is a solution of (1.1) with the form (1.2) concentrating at p 1 , p 2 , , p m , which are different non-degenerate points of V ( y ) . Then, there hold

x ε , j p j = O ( ε 2 ) , j = 1 , 2 , , m .

Now, we prove Theorem 1.3 by contradiction. Due to the linear property of the operator A ε , we can suppose that there are ε n 0 satisfying v ε n L ( R 3 ) = 1 and A ε n v ε n = 0 . For simplicity, we drop the subscript n . In order to get a contradiction, we want to prove v ε ( y ) L ( R 3 ) < 1 2 when ε is small enough. At first, we will prove that v ε decays exponentially away from the concentrating points so that v ε ( y ) < 1 2 for y R 3 \ j = 1 m B ε R ( x ε , j ) , where R > 0 large enough. On the other hand, we study the local behaviours of v ε near each concentrating point through the blow-up analysis

v ε , j ( y ) v ε ( ε y + x ε , j ) , j = 1 , 2 , , m .

We will prove v ε , j 0 in C 1 ( B R ( 0 ) ) as ε 0 , by using local Pohozaev identities.

Lemma 3.3

We have

v ε ε = O ε 3 2 .

Proof

Because v ε satisfies

(3.2) ε 2 Δ v ε + V ( y ) v ε = p u ε p 1 v ε Φ u ε v ε 1 2 π u ε R 3 u ε ( z ) v ε ( z ) y z d z ,

we have

(3.3) v ε ε 2 = p R 3 u ε p 1 v ε 2 d y R 3 Φ u ε v ε 2 d y 1 2 π R 3 R 3 u ε ( z ) v ε ( z ) y z d z u ε v ε d y .

It follows from (3.1) and v ε L ( R 3 ) = 1 that

(3.4) R 3 u ε p 1 v ε 2 d y R 3 u ε p 1 d y C R 3 j = 1 m e λ y x ε , j ε p 1 d y = O ( ε 3 ) .

According to Hardy-Littlewood-Sobolev inequality and Hölder inequality, we know

(3.5) R 3 R 3 u ε ( z ) v ε ( z ) y z d z u ε v ε d y C u ε v ε L 6 5 ( R 3 ) 2 C u ε L 12 5 ( R 3 ) 2 v ε L 12 5 ( R 3 ) 2 C ε 2 v ε ε 2

and

(3.6) R 3 Φ u ε v ε 2 d y C u ε 2 L 6 5 ( R 3 ) v ε 2 L 6 5 ( R 3 ) = C u ε L 12 5 ( R 3 ) 2 v ε L 12 5 ( R 3 ) 2 C ε 2 v ε ε 2 .

By (3.3)–(3.6), we obtain

v ε ε 2 C ( ε 3 + ε 2 v ε ε 2 ) ,

which implies v ε ε = O ε 3 2 .

The next lemma shows the estimate of v ε and v ε .

Lemma 3.4

There exist σ > 0 and C > 0 such that

(3.7) v ε ( y ) C j = 1 m e σ y x ε , j ε , y R 3

and

(3.8) v ε ( y ) C e σ d 4 ε , y B d ( x ε , j ) ,

where 0 < d 1 4 min h j p h p j .

Proof

By (3.1), for λ in Lemma 3.1, there exists R > 0 such that

V ( y ) + Φ u ε p u ε p 1 λ 2 , y R 3 \ j = 1 m B ε R ( x ε , j ) .

When y Ω ε , 1 { y R 3 \ j = 1 m B ε R ( x ε , j ) : v ε ( y ) 0 } , we have

ε 2 Δ v ε + λ 2 v ε f ε ,

where f ε ( y ) 1 2 π u ε ( y ) R 3 u ε ( z ) v ε ( z ) y z d z .

Suppose ξ ε is the solution of equation,

ε 2 Δ ξ ε + λ 2 ξ ε = f ε .

Define ξ ε ˜ ( y ) = ξ ε ( ε y ) , then ξ ε ˜ satisfies

Δ ξ ε ˜ ( y ) + λ 2 ξ ε ˜ ( y ) = f ε ( ε y ) .

By Theorem 6.23 in [20], we have

ξ ε ˜ ( y ) = 1 4 π R 3 1 y z e λ y z f ε ( ε z ) d z .

Therefore,

ξ ε ( y ) = ξ ε ˜ y ε = 1 4 π R 3 1 y ε z e λ y ε z f ε ( ε z ) d z .

Next, we will give the estimates of ξ ε ( y ) . It follows from Hölder inequality that

(3.9) ξ ε ( y ) = 1 8 π 2 R 3 1 y ε z e λ y ε z R 3 u ε ( x ) v ε ( x ) ε z x d x u ε ( ε z ) d z 1 8 π 2 ε 2 R 3 e λ ε y z y z R 3 u ε ( x ) v ε ( x ) z x d x u ε ( z ) d z C ε 2 j = 1 m e σ ε y x ε , j R 3 1 y z e λ σ ε y z ( Φ u ε ( z ) Φ v ε ( z ) ) 1 2 d z C ε 2 j = 1 m e σ ε y x ε , j R 3 e 6 ( λ σ ) 5 ε y z y z 6 5 d z 5 6 Φ u ε L 6 ( R 3 ) 1 2 Φ v ε L 6 ( R 3 ) 1 2 ,

where σ ( 0 , λ ) . It is easy to verify that

(3.10) R 3 e 6 ( λ σ ) 5 ε y z y z 6 5 d z C ε 9 5 .

By Lemmas 2.1 and 3.3, we have

(3.11) Φ u ε L 6 ( R 3 ) 1 2 C ε 5 4 and Φ v ε L 6 ( R 3 ) 1 2 C ε 5 4 .

Thanks to (3.9)–(3.11), it holds

(3.12) ξ ε ( y ) C ε 2 j = 1 m e σ ε y x ε , j .

Denote that g ε ( y ) = v ε ( y ) ξ ε ( y ) , then g ε satisfies that

ε 2 Δ g ε + λ 2 g ε 0 , in Ω ε , 1 .

Let

T ε ( u ) = ε 2 Δ u + λ 2 u .

By the direct computation, we can obtain

T ε ( e σ y x ε , j ε ) > 0 .

Because of (3.12) and v ε L ( R 3 ) = 1 , there exists M > 0 , such that

g ε < M .

Denote

g ˜ ε ( y ) = M e σ R j = 1 m e σ y x ε , j ε g ε ( y ) .

Thus,

T ε ( g ˜ ε ) > 0 in Ω ε , 1 .

Moreover, for y Ω ε , 1 , we have

g ˜ ε ( y ) > 0 .

By the comparison principle, we obtain that

g ˜ ε ( y ) 0 , for y Ω ε , 1 ,

which implies that

v ε ( y ) ξ ε ( y ) + M e σ R j = 1 m e σ y x ε , j ε C j = 1 m e σ y x ε , j ε , for y Ω ε , 1 .

Analogously, when y Ω ε , 2 { y R 3 \ j = 1 m B ε R ( x ε , j ) : v ε ( y ) < 0 } , it holds

0 > v ε ( y ) ξ ε ( y ) M e σ R j = 1 m e σ y x ε , j ε C j = 1 m e σ y x ε , j ε .

Therefore, we obtain

v ε ( y ) C j = 1 m e σ ε y x ε , j , y R 3 \ j = 1 m B ε R ( x ε , j ) .

For y j = 1 m B ε R ( x ε , j ) , we have

v ε ( y ) 1 e σ R j = 1 m e σ ε y x ε , j .

Thus, (3.7) holds.

Next, we prove (3.8). Because v ε satisfies

Δ v ε = 1 ε 2 [ p u ε p 1 v ε V ( y ) v ε Φ u ε v ε 1 2 π u ε R 3 u ε ( z ) v ε ( z ) y z d z ] ,

by L q -estimate, one has, for x B d ( x ε , j ) , q < 6 ,

(3.13) v ε W 2 , q B d 4 ( x ) C ε 2 p u ε p 1 v ε V v ε Φ u ε v ε 1 2 π u ε R 3 u ε ( z ) v ε ( z ) y z d z L q B d 2 ( x ) + C v ε L q B d 2 ( x ) C ε 2 v ε L q B d 2 ( x ) + Φ u ε v ε L q B d 2 ( x ) + u ε R 3 u ε ( z ) v ε ( z ) y z d z L q B d 2 ( x ) + C v ε L q B d 2 ( x ) C ε 2 v ε L q B d 2 ( x ) + Φ u ε v ε L q B d 2 ( x ) + u ε R 3 u ε ( z ) v ε ( z ) y z d z L q B d 2 ( x ) .

When y B d 2 ( x ) , then d 2 y x ε , j 3 d 2 . If ε is small enough, x ε , j x ε , h 1 2 p j p h 2 d , we obtain y x ε , h x ε , j x ε , h y x ε , j 2 d 3 d 2 = d 2 , h j . Therefore,

(3.14) v ε L q B d 2 ( x ) = B d 2 ( x ) v ε ( y ) q d y 1 q C B d 2 ( x ) h = 1 m e σ ε y x ε , h q d y 1 q C B d 2 ( x ) h = 1 m e σ d 2 ε q d y 1 q C e σ d 2 ε .

By Hölder inequality and Lemma 2.1, we have

(3.15) Φ u ε v ε L q B d 2 ( x ) Φ u ε L 6 B d 2 ( x ) v ε L 6 q 6 q B d 2 ( x ) C e σ d 2 ε Φ u ε L 6 ( R 3 ) C e σ d 2 ε

and

(3.16) u ε R 3 u ε ( z ) v ε ( z ) y z d z L q B d 2 ( x ) B d 2 ( x ) ( Φ u ε Φ v ε ) 1 2 u ε q d y 1 q Φ u ε L 6 B d 2 ( x ) 1 2 Φ v ε L 6 B d 2 ( x ) 1 2 u ε L 6 q 6 q B d 2 ( x ) C u ε L 6 q 6 q B d 2 ( x ) C e σ d 2 ε .

It follows from (3.13)–(3.16) that

(3.17) v ε W 2 , q B d 4 ( x ) C ε 2 e σ d 2 ε C e σ d 4 ε , for q < 6 .

Taking 3 < q < 6 , according to (3.17) and Sobolev embedding theorem, (3.8) holds.□

Now, we study the local behaviours of v ε near each concentrating point.

Lemma 3.5

We have

v ε , j ( y ) i = 1 3 a i j ( V ( p j ) ) 1 p 1 w ( V ( p j ) y ) y i i n C 1 ( B R ( 0 ) ) a s ε 0 ,

for some constants a i j , i = 1 , 2 , 3 , j = 1 , 2 , , m .

Proof

We notice that v ε , j satisfies the equation

Δ v ε , j + V ( ε y + x ε , j ) v ε , j + ε 2 J ε , 1 = J ε , 2 v ε , j ,

where

J ε , 1 ( y ) 1 4 π R 3 u ε 2 ( ε z + x ε , j ) y z d z v ε , j ( y ) + 1 2 π R 3 u ε ( ε z + x ε , j ) v ε , j ( z ) y z d z u ε ( ε y + x ε , j )

and

J ε , 2 ( y ) p u ε ( ε y + x ε , j ) p 1 .

Since v ε , j L ( R 3 ) = 1 , we have J ε , 1 ( y ) C . By Lemma 3.1, we obtain

u ε ( ε y + x ε , j ) = h = 1 m U ε , x ε , h ( ε y + x ε , j ) + ω ε ( ε y + x ε , j ) = ( V ( x ε , j ) ) 1 p 1 w ( V ( x ε , j ) y ) + o ( 1 ) = ( V ( p j ) ) 1 p 1 w ( V ( p j ) y ) + o ( 1 ) , for y B R ( 0 ) ,

which implies

J ε , 2 ( y ) = p V ( p j ) w p 1 ( V ( p j ) y ) + o ( 1 ) .

According to the L q regular theorem and the Schauder estimate, we have v ε , j v j in C 2 ( R 3 ) and v j satisfies

Δ v j + V ( p j ) v j = p V ( p j ) w p 1 ( V ( p j ) y ) v j .

It follows from the non-degeneracy of w that

v j = i = 1 3 a i j ( V ( p j ) ) 1 p 1 w ( V ( p j ) y ) y i

for some constants a i j .□

Lemma 3.6

Let a i j be as in Lemma 3.5, then we have

a i j = 0 , i = 1 , 2 , 3 ; j = 1 , 2 , , m .

Proof

We will use Pohozaev identities in Lemma 2.4 to prove by choosing Ω = B δ ( x ε , j ) with δ = 1 4 min h j p h p j . At first, we compute the left-hand side of (2.5). By the Taylor’s expansion, we have

(3.18) B δ ( x ε , j ) V ( y ) y i u ε v ε d y = l = 1 3 B δ ( x ε , j ) 2 V ( p j ) y i y l ( y l p j , l ) u ε v ε d y + o B δ ( x ε , j ) y p j u ε v ε d y .

Letting y = ε z + x ε , j , we obtain

(3.19) B δ ( x ε , j ) ( y l p j , l ) u ε v ε d y = ε 3 B δ ε ( 0 ) ( ε z l + x ε , j l p j , l ) u ε ( ε z + x ε , j ) v ε ( ε z + x ε , j ) d z = ε 4 B δ ε ( 0 ) z l + x ε , j l p j , l ε u ε ( ε z + x ε , j ) v ε , j d z .

According to Lemma 3.1 and Proposition 3.2,

x ε , j p j = O ( ε 2 ) , u ε C h = 1 m e λ x x ε , h ε , x R 3 ,

thus,

x ε , j l p j , l = O ( ε 2 ) , u ε ( ε z + x ε , j ) C e λ z + h j e λ ε z + x ε , j x ε , h ε .

Therefore, we have

B δ ε ( 0 ) x ε , j l p j , l ε u ε ( ε z + x ε , j ) v ε , j d z C ε v ε , j L ( R 3 ) B δ ε ( 0 ) u ε ( ε z + x ε , j ) d z C ε v ε , j L ( R 3 ) B δ ε ( 0 ) e λ z + h j e λ ε z + x ε , j x ε , h ε d z .

Since δ = 1 4 min h j p h p j , we have

(3.20) B δ ε ( 0 ) x ε , j l p j , l ε u ε ( ε z + x ε , j ) v ε , j d z C ε B δ ε ( 0 ) e λ z + e λ δ ε d z C ε .

Combining (3.19) with (3.20), we obtain

(3.21) B δ ( x ε , j ) ( y l p j , l ) u ε v ε d y = ε 4 B δ ε ( 0 ) z l u ε ( ε z + x ε , j ) v ε , j d z + o ( ε 4 ) .

Next, we compute B δ ε ( 0 ) z l u ε ( ε z + x ε , j ) v ε , j d z . As we know,

u ε ( y ) = h = 1 m U ε , x ε , h ( y ) + ω ε ( y ) = h = 1 m ( V ( x ε , h ) ) 1 p 1 w V ( x ε , h ) y x ε , h ε + ω ε ( y ) .

By Lemma 3.4, we obtain

(3.22) B δ ε ( 0 ) z l ω ε ( ε z + x ε , j ) v ε , j d z B δ ε ( 0 ) ω ε 2 ( ε z + x ε , j ) d z 1 2 B δ ε ( 0 ) z 2 v ε , j 2 d z 1 2 C 1 ε 3 R 3 ω ε 2 ( y ) d y 1 2 B δ ε ( 0 ) z 2 e σ z d z 1 2 C ε 3 2 ω ε ε = o ( 1 )

and

(3.23) B δ ε ( 0 ) z l h j ( V ( x ε , h ) ) 1 p 1 w V ( x ε , h ) ε z + x ε , j x ε , h ε v ε , j d z C B δ ε ( 0 ) z e V 0 δ ε v ε , j d z = o ( 1 ) .

According to (3.21)–(3.23) and Lemma 3.5, we have

B δ ε ( x ε , j ) ( y l p j , l ) u ε v ε d y = ε 4 ( V ( p j ) ) 1 p 1 B δ ε ( 0 ) z l w ( V ( p j ) z ) v ε , j d z + o ( ε 4 ) = ε 4 ( V ( p j ) ) 2 p 1 a l j R 3 z l w ( V ( p j ) z ) w ( V ( p j ) z ) z l d z + o ( ε 4 ) ,

which, together with (3.18), implies

(3.24) B δ ( x ε , j ) V ( y ) y i u ε v ε d y = ε 4 ( V ( p j ) ) 2 p 1 l = 1 3 2 V ( p j ) y i y l a l j R 3 z l w ( V ( p j ) z ) w ( V ( p j ) z ) z l d z + o ( ε 4 ) .

Next, we estimate the right-hand side of (2.5). Using Lemmas 3.1 and 3.4, there exists γ > 0 such that

(3.25) ε 2 B δ ( x ε , j ) u ε n v ε y i + v ε n u ε y i d S + ε 2 B δ ( x ε , j ) u ε v ε n i d S + B δ ( x ε , j ) ( V ( y ) u ε u ε p 1 u ε ) v ε n i d S = O ( e γ ε )

and

(3.26) B δ ( x ε , j ) Φ u ε u ε v ε n i d S + 1 4 π B δ ( x ε , j ) R 3 u ε ( z ) v ε ( z ) y z d z u ε 2 n i d S = O ( e γ ε ) .

Denote

B δ ( x ε , j ) R 3 z i y i y z 3 u ε 2 ( z ) d z u ε ( y ) v ε ( y ) d y = E 1 + E 2 + E 3 + E 4 + E 5 ,

where

E 1 = B δ ( x ε , j ) R 3 z i y i y z 3 u ε 2 ( z ) d z ω ε ( y ) v ε ( y ) d y ; E 2 = B δ ( x ε , j ) R 3 z i y i y z 3 u ε 2 ( z ) d z h j U ε , x ε , h ( y ) v ε ( y ) d y ; E 3 = B δ ( x ε , j ) R 3 z i y i y z 3 u ε ( z ) h j U ε , x ε , h ( z ) + ω ε ( z ) d z U ε , x ε , j ( y ) v ε ( y ) d y ; E 4 = B δ ( x ε , j ) R 3 z i y i y z 3 U ε , x ε , j 2 ( z ) d z U ε , x ε , j ( y ) v ε ( y ) d y ; E 5 = B δ ( x ε , j ) R 3 z i y i y z 3 U ε , x ε , j ( z ) h j U ε , x ε , h ( z ) + ω ε ( z ) d z U ε , x ε , j ( y ) v ε ( y ) d y .

By Hardy-Littlewood-Sobolev inequality, Hölder inequality, Theorem 1.1, and Lemma 3.3, we have

E 1 u ε L 3 ( R 3 ) 2 ω ε L 3 ( R 3 ) v ε L 3 ( R 3 ) = O ( ε 5 )

and

E 5 h j U ε , x ε , j U ε , x ε , h L 3 2 ( R 3 ) + U ε , x ε , j ω ε L 3 2 ( R 3 ) U ε , x ε , j v ε L 3 2 ( R 3 ) h j U ε , x ε , j U ε , x ε , h L 3 2 ( R 3 ) + U ε , x ε , j L 3 ( R 3 ) ω ε L 3 ( R 3 ) U ε , x ε , j L 3 ( R 3 ) v ε L 3 ( R 3 ) = O ε 4 h j e V 0 2 ε x ε , j x ε , h + ε = O ( ε 5 ) .

Similarly, we have

E 2 = ε 3 B δ ( x ε , j ) R 3 ε x i + x ε , j i y i y ( ε x + x ε , j ) 3 u ε 2 ( ε x + x ε , j ) d x h j U ε , x ε , h ( y ) v ε ( y ) d y = ε 6 B δ ε ( 0 ) R 3 ε x i + x ε , j i ( ε z i + x ε , j i ) ( ε z + x ε , j ) ( ε x + x ε , j ) 3 u ε 2 ( ε x + x ε , j ) d x h j U ε , x ε , h ( ε z + x ε , j ) v ε , j ( z ) d z = O e γ ε .

By utilizing Lemma 3.5 and the symmetry of w , we obtain

E 4 = ε 4 ( V ( p j ) ) 3 p 1 B δ ε ( 0 ) R 3 z i y i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) v ε , j ( y ) d z d y + o ( ε 4 ) = ε 4 ( V ( p j ) ) 4 p 1 h = 1 3 a h j B δ ε ( 0 ) R 3 z i y i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) w ( V ( p j ) y ) y h d z d y + o ( ε 4 ) = ε 4 ( V ( p j ) ) 4 p 1 a i j B δ ε ( 0 ) R 3 z i y i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) w ( V ( p j ) y ) y i d z d y + o ( ε 4 ) .

Next, we estimate E 3 . Expand E 3 as follows:

E 3 = E 31 + E 32 + E 33 + E 34 ,

where

E 31 = B δ ( x ε , j ) R 3 z i y i y z 3 u ε ( z ) ω ε ( z ) U ε , x ε , j ( y ) v ε ( y ) d z d y ; E 32 = B δ ( x ε , j ) R 3 z i y i y z 3 U ε , x ε , j ( z ) h j U ε , x ε , h ( z ) U ε , x ε , j ( y ) v ε ( y ) d z d y ; E 33 = B δ ( x ε , j ) R 3 z i y i y z 3 h j U ε , x ε , h ( z ) 2 U ε , x ε , j ( y ) v ε ( y ) d z d y ; E 34 = B δ ( x ε , j ) R 3 z i y i y z 3 ω ε ( z ) h j U ε , x ε , h ( z ) U ε , x ε , j ( y ) v ε ( y ) d z d y .

Similarly, by using Hardy-Littlewood-Sobolev inequality, Hölder inequality, Theorem 1.1, and Lemma 3.3, we obtain

E 31 = O ( ε 5 ) , E 32 = O e γ ε , E 34 = O ( ε 5 ) .

By Corollary 2.3 and Fubini theorem, we have

E 33 h j B δ ( x ε , j ) R 3 1 y z 2 U ε , x ε , h 2 ( z ) U ε , x ε , j ( y ) d z d y + O e γ ε = h j ε B δ ε ( 0 ) R 3 1 x z x ε , j ε 2 U ε , x ε , h 2 ( z ) ( V ( x ε , j ) ) 1 p 1 w ( V ( x ε , j ) x ) d z d x + O e γ ε C ε 3 h j R 3 1 z x ε , j 2 U ε , x ε , h 2 ( z ) d z + O e γ ε = C ε 6 ( V ( x ε , h ) ) 2 p 1 h j R 3 1 ε y + x ε , h x ε , j 2 w 2 ( V ( x ε , h ) y ) d y + O e γ ε C ε 6 h j 1 x ε , h x ε , j 2 + O e γ ε = O ( ε 6 ) .

Thus,

(3.27) B δ ( x ε , j ) R 3 z i y i y z 3 u ε 2 ( z ) d z u ε ( y ) v ε ( y ) d y = ε 4 ( V ( p j ) ) 4 p 1 a i j B δ ε ( 0 ) R 3 z i y i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) w ( V ( p j ) y ) y i d z d y + o ( ε 4 ) = ε 4 ( V ( p j ) ) 4 p 1 a i j R 3 R 3 z i y i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) w ( V ( p j ) y ) y i d z d y + o ( ε 4 ) .

Analogous to (3.27), we have

(3.28) B δ ( x ε , j ) R 3 z i y i y z 3 u ε ( z ) v ε ( z ) d z u ε 2 ( y ) d y = ε 4 ( V ( p j ) ) 4 p 1 a i j R 3 R 3 y i z i y z 3 w 2 ( V ( p j ) z ) w ( V ( p j ) y ) w ( V ( p j ) y ) y i d z d y + o ( ε 4 ) .

Therefore, it follows from (2.5) and (3.25)–(3.28) that

B δ ( x ε , j ) V ( y ) y i u ε v ε d y = o ( ε 4 ) ,

which, together with (3.24), gives

( D 2 V ( p j ) ) 3 × 3 a 1 j a 2 j a 3 j = o ( 1 ) .

By ( V 2 ) , we have

a i j = 0 , i = 1 , 2 , 3 ; j = 1 , 2 , , m .

Proof of Theorem 1.3

By Lemma 3.4, there exists R > 0 such that

(3.29) v ε ( y ) C e σ R < 1 2 , y R 3 \ j = 1 m B ε R ( x ε , j ) .

According to Lemmas 3.5 and 3.6, we have

v ε , j 0 in C 1 ( B R ( 0 ) ) as ε 0 ,

which implies

(3.30) v ε ( y ) = o ( 1 ) , y B ε R ( x ε , j ) , j = 1 , 2 , , m .

It follows from (3.29) and (3.30) that

v ε ( y ) < 1 2 , y R 3 ,

which is a contradiction to v ε L ( R 3 ) = 1 . Therefore, v ε = 0 for small ε .□

Acknowledgements

The authors would like to acknowledge the anonymous referees for valuable comments and suggestions to improve the quality of our manuscript.

  1. Funding information: H.-S. Ding was supported by NSFC and Two Thousand Talents Program of Jiangxi Province (jxsq2019201001). B. Li was supported by NSFC (Nos. 12101274, 12226309), The Jiangxi Province Science Fund for Distinguished Young Scholars (No. 20224ACB218001), and Jiangxi Provincial Department of Education Fund (No. GJJ210336).

  2. Conflict of interest: The authors state no conflict of interest.

  3. Data availability statement: There is no data in this article.

References

[1] C. O. Alves, M. Souto, and S. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl. 337 (2011), 584–592. 10.1016/j.jmaa.2010.11.031Search in Google Scholar

[2] A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math. 76 (2008), 257–274. 10.1007/s00032-008-0094-zSearch in Google Scholar

[3] A. Ambrosetti and A. Malchiodi, Perturbation methods and semilinear elliptic problems on RN, Progress in Mathematics, Birkhäuser, Basel, 2006. 10.1007/3-7643-7396-2Search in Google Scholar

[4] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math. 10 (2008), 391–404. 10.1142/S021919970800282XSearch in Google Scholar

[5] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90–108. 10.1016/j.jmaa.2008.03.057Search in Google Scholar

[6] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283–293. 10.12775/TMNA.1998.019Search in Google Scholar

[7] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), 409–420. 10.1142/S0129055X02001168Search in Google Scholar

[8] D. Cao, S. Peng, and S. Yan, Singularly perturbed methods for nonlinear elliptic problems, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2021. 10.1017/9781108872638Search in Google Scholar

[9] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations 248 (2010), 521–543. 10.1016/j.jde.2009.06.017Search in Google Scholar

[10] T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307–322. 10.1515/ans-2004-0305Search in Google Scholar

[11] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinburgh. Sect. A. 134 (2004), 893–906. 10.1017/S030821050000353XSearch in Google Scholar

[12] T. D’Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equation and an optional configuration problem, Calc. Var. Partial Differential Equations 25 (2005), 105–137. 10.1007/s00526-005-0342-9Search in Google Scholar

[13] T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37 (2005), 321–342. 10.1137/S0036141004442793Search in Google Scholar

[14] P. D’Avenia, A. Pomponio, and G. Vaira, Infinite many positive solutions for a Schrödinger-Poisson system, Nonlinear Anal. Theory Methods Appl. 74 (2011), 5705–5721. 10.1016/j.na.2011.05.057Search in Google Scholar

[15] H. Ding, B. Li, and J. Ye, Existence of multi-bump solutions for the Schrödinger-Poisson system, J. Math. Anal. Appl. 503 (2021), 125340. 10.1016/j.jmaa.2021.125340Search in Google Scholar

[16] I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part II: Existence Math. Models Meth. Appl. Sci. 19 (2009), 877–910. 10.1142/S0218202509003656Search in Google Scholar

[17] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008), 573–595. 10.1515/ans-2008-0305Search in Google Scholar

[18] I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part I: Necessary Conditions Math. Models Meth. Appl. Sci. 19 (2009), 707–720. 10.1142/S0218202509003589Search in Google Scholar

[19] M. K. Kwong, Uniqueness of positive solutions of Δu−u+up=0 in RN, Arch. Rational Mech. Anal. 105 (1989), 243–266. 10.1007/BF00251502Search in Google Scholar

[20] E. Lieb and M. Loss, Analysis, Grad. Stud. Math., Vol. 14, American Mathematical Society, Rhode Island, 1997. Search in Google Scholar

[21] W. Long, J. Yang, and W. Yu, Nodal solutions for fractional Schrödinger-Poisson problems, Science China Math. 63 (2020), 2267–2286. 10.1007/s11425-018-9452-ySearch in Google Scholar

[22] G. Lu and J. Wei, On nonlinear Schrödinger equations with totally degenerate potentials. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 6, 691–696. 10.1016/S0764-4442(98)80032-3Search in Google Scholar

[23] P. Luo, S. Peng, J. Wei, and S. Yan, Excited states of Bose-Einstein condensates with degenerate attractive interactions, Calc. Var. Partial Differential Equations 60 (2021), Paper no. 155, 33 pp. 10.1007/s00526-021-02046-xSearch in Google Scholar

[24] D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations concentration around a sphere, Math. Models Meth. Appl. Sci. 15 (2005), 141–164. 10.1142/S0218202505003939Search in Google Scholar

[25] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674. 10.1016/j.jfa.2006.04.005Search in Google Scholar

[26] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poinsson-Slater problem around a local minimum of potential, Rev. Mat. Iberoamericana 27 (2011), 253–271. 10.4171/RMI/635Search in Google Scholar

[27] J. Sun and S. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations 260 (2016), 2119–2149. 10.1016/j.jde.2015.09.057Search in Google Scholar

[28] S. Tian, Non-degeneracy of the ground state solution on nonlinear Schrödinger equation, Appl. Math. Lett. 111 (2021), 106634. 10.1016/j.aml.2020.106634Search in Google Scholar

[29] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche di Matematica 60 (2011), 263–297. 10.1007/s11587-011-0109-xSearch in Google Scholar

Received: 2022-11-08
Revised: 2023-05-26
Accepted: 2023-05-28
Published Online: 2023-07-09

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Asymptotic properties of critical points for subcritical Trudinger-Moser functional
  3. The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation
  4. On some dense sets in the space of dynamical systems
  5. Sharp profiles for diffusive logistic equation with spatial heterogeneity
  6. Generic properties of the Rabinowitz unbounded continuum
  7. Global bifurcation of coexistence states for a prey-predator model with prey-taxis/predator-taxis
  8. Multiple solutions of p-fractional Schrödinger-Choquard-Kirchhoff equations with Hardy-Littlewood-Sobolev critical exponents
  9. Improved fractional Trudinger-Moser inequalities on bounded intervals and the existence of their extremals
  10. The existence of infinitely many boundary blow-up solutions to the p-k-Hessian equation
  11. A priori bounds, existence, and uniqueness of smooth solutions to an anisotropic Lp Minkowski problem for log-concave measure
  12. Existence of nonminimal solutions to an inhomogeneous elliptic equation with supercritical nonlinearity
  13. Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem
  14. Gagliardo-Nirenberg-type inequalities using fractional Sobolev spaces and Besov spaces
  15. Ground states of Schrödinger systems with the Chern-Simons gauge fields
  16. Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries
  17. A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
  18. A modified Picone-type identity and the uniqueness of positive symmetric solutions for a prescribed mean curvature problem
  19. On a version of hybrid existence result for a system of nonlinear equations
  20. Special Issue: Geometric PDEs and applications
  21. Preface for the special issue on “Geometric Partial Differential Equations and Applications”
  22. Convex hypersurfaces with prescribed Musielak-Orlicz-Gauss image measure
  23. Total mean curvatures of Riemannian hypersurfaces
  24. On degenerate case of prescribed curvature measure problems
  25. A curvature flow to the Lp Minkowski-type problem of q-capacity
  26. Aleksandrov reflection for extrinsic geometric flows of Euclidean hypersurfaces
  27. A note on second derivative estimates for Monge-Ampère-type equations
  28. The Lp chord Minkowski problem
  29. Widths of balls and free boundary minimal submanifolds
  30. Smooth approximation of twisted Kähler-Einstein metrics
  31. The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
  32. A Carleman inequality on product manifolds and applications to rigidity problems
  33. Asymptotic behavior of solutions to the Monge-Ampère equations with slow convergence rate at infinity
  34. Pinched hypersurfaces are compact
  35. The spinorial energy for asymptotically Euclidean Ricci flow
  36. Geometry of CMC surfaces of finite index
  37. Capillary Schwarz symmetrization in the half-space
  38. Regularity of optimal mapping between hypercubes
  39. Special Issue: In honor of David Jerison
  40. Preface for the special issue in honor of David Jerison
  41. Homogenization of oblique boundary value problems
  42. A proof of a trace formula by Richard Melrose
  43. Compactness estimates for minimizers of the Alt-Phillips functional of negative exponents
  44. Regularity properties of monotone measure-preserving maps
  45. Examples of non-Dini domains with large singular sets
  46. Sharp inequalities for coherent states and their optimizers
  47. Gradient estimates and the fundamental solution for higher-order elliptic systems with lower-order terms
  48. Propagation of symmetries for Ricci shrinkers
  49. Linear extension operators for Sobolev spaces on radially symmetric binary trees
  50. The Neumann problem on the domain in 𝕊3 bounded by the Clifford torus
  51. On an effective equation of the reduced Hartree-Fock theory
  52. Polynomial sequences in discrete nilpotent groups of step 2
  53. Integral inequalities with an extended Poisson kernel and the existence of the extremals
  54. On singular solutions of Lane-Emden equation on the Heisenberg group
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ans-2022-0079/html
Scroll to top button