Home Mathematics Multi-peak Positive Solutions of a Nonlinear Schrödinger–Newton Type System
Article Open Access

Multi-peak Positive Solutions of a Nonlinear Schrödinger–Newton Type System

  • Billel Gheraibia and Chunhua Wang EMAIL logo
Published/Copyright: November 13, 2019

Abstract

In this paper, we study the following nonlinear Schrödinger–Newton type system:

{ - ϵ 2 Δ u + u - Φ ( x ) u = Q ( x ) | u | u , x 3 , - ϵ 2 Δ Φ = u 2 , x 3 ,

where ϵ>0 and Q(x) is a positive bounded continuous potential on 3 satisfying some suitable conditions. By applying the finite-dimensional reduction method, we prove that for any positive integer k, the system has a positive solution with k-peaks concentrating near a strict local minimum point x0 of Q(x) in 3, provided that ϵ>0 is sufficiently small.

MSC 2010: 35B40; 35B45; 35J40

1 Introduction and Main Result

In this paper, we consider the nonlinear Schrödinger–Newton type system

(1.1) { - ϵ 2 Δ u + u - Φ ( x ) u = Q ( x ) | u | u , x 3 , - ϵ 2 Δ Φ = u 2 , x 3 ,

where ϵ>0 and Q(x) is a bounded positive continuous function on 3. This system describes the interaction of a particle with its own gravitational field. In Quantum Mechanics, the behavior of a single particle of mass m>0 can be described by the linear Schrödinger equation

i ψ t = - 2 2 m Δ ψ + Φ ( x ) ψ , ( x , t ) 3 × + ,

where is the Planck constant and Φ(x):3 is the time independent potential of the particle at the position x3.

When there are many particles one can try to simulate the effects of the mutual interactions by introducing a nonlinear term. Then we are led to a nonlinear equation of the following form:

(1.2) i ψ t = - 2 2 m Δ ψ + Φ ( x ) ψ - Q ( x ) | ψ | p - 1 ψ , ( x , t ) 3 × + ,

where 1<p<5. If we suppose that the particle moves in its own gravitational field, where the field is generated by the particles probability density via the classical Newton field equation, then the potential Φ is given (up to constants) by

Φ ( x ) = - 2 m 2 3 ψ 2 | x - y | 𝑑 y ,

i.e., Φ(x) is the solution of the Poisson equation

2 2 m Δ Φ ( x ) = | ψ | 2 .

Moreover, if we look for standing waves, namely, waves of the form

ψ ( x , t ) = e i ω t u ( x ) , ω > 0 , x 3 , t + ,

then the system that we study is given by

(1.3) { - 2 2 m Δ u + ω u - Φ ( x ) u = Q ( x ) | u | u , x 3 , - 2 2 m Δ Φ = u 2 , x 3 .

For simplicity of notations, taking 22m=ϵ2 and ω=1 into (1.3), we get (1.1).

The form of system (1.3) is very similar to the following standard Schrödinger–Poisson system:

(1.4) { i ψ t = - 2 2 m Δ ψ + ( V ( x ) + E ) ψ + ϵ K ( x ) Φ ( x ) ψ - f ( x , ψ ) , ( x , t ) 3 × + , - Δ Φ = K ( x ) | ψ | 2 , x 3 ,

where ,i,m and ψ are the same as that of (1.2), E is a real number and ϵ>0. System (1.4) appears in quantum mechanics models (see, e.g., [5, 7, 21]) and in semiconductor theory (see [4, 22, 25]). There are various results about (1.4) under various assumptions of V(x),K(x) and f(x,ψ); one can refer to[1, 2, 4, 9, 8, 10, 11, 12, 13, 14, 16, 15, 17, 20, 23, 27, 28, 33, 37] etc. All the papers referred above used the variational methods to study (1.4). Moreover, we want to point out that in [20] and [19], solutions of (1.4) are constructed by applying the finite-dimensional reduction method under some suitable conditions of V(x),K(x) and f(x,ψ).

When there is no nonlinear term on the right-hand side of the first equation of (1.1), i.e., the classic Schrödinger–Newton system, for the more general Schrödinger–Newton system

(1.5) { - ϵ 2 Δ u + V ( x ) u - K ( x ) Φ ( x ) u = 0 , x 3 , - ϵ 2 Δ Φ = K ( x ) u 2 , x 3 ,

there are also some results, and one can refer to [18, 24, 29, 30, 32, 34, 36] etc. In [34], when K(x)1 in (1.5), Wei and Winter show that if for some positive integer k, the points Pi3, i=1,2,,k, with PiPj for ij, are all local minimums or local maximums or non-degenerate critical points of V(x), then for ϵ small enough, there exist solutions of (1.5) with k bumps which concentrate at Pi. They also prove that, given a local maximum point P0 of V(x), there exists a solution with k bumps which all concentrate at P0 and whose distances to P0 are at least O(ϵ13). Very recently, Luo, Peng and the second author, using a local Pohozaev type of identity, blow-up analysis and the maximum principle, proved the uniqueness of positive solutions for (1.5) concentrating at the non-degenerate critical points of V(x) for ϵ small enough.

Compared with (1.4), to the best knowledge of us, there are very few results about (1.1). In [31], Vaira proved the existence of positive ground states for (1.5) with more general nonlinearity and potentials. Moreover, in [32], Vaira proved the ground state solution of (1.1) with the potential Q(x)constant is unique up to translations and non-degenerate.

Applying the non-degenerate result of the ground state solution of the limit equation for (1.1) in [32], motivated by [20, 19, 26], we want to apply the finite-dimensional reduction method to study the existence of positive multi-peak solutions for (1.1). Our aim here is to show that corresponding to each strict local minimum point x0 of Q(x) in 3 and for each positive integer k, (1.1) has a positive solution with k-peaks concentrating near x0, provided ϵ>0 is sufficiently small, that is, a solution with k-maximum points converging to x0 while vanishing as ϵ0 everywhere else in 3.

Throughout this paper, we assume that Q(x) satisfies the following conditions:

  1. Q has a strict local minimum at some point x03, that is, for some δ>0, Q(x)>Q(x0) for all 0<|x-x0|<δ.

  2. There are constants C,θ>0 such that |Q(x)-Q(z)|C|x-z|θ for all |x-x0|δ,|z-x0|δ.

In the sequel, denote by H1(3) the standard Sobolev space endowed with the standard norm and inner product ,. Let ||p be the usual norm of Lp(3). Define D1,2(3) to be the completion of C0(3) with respect to the Dirichlet norm uD=(|u|2dx)12. f(x) denotes the Lebesgue integral of f(x) in 3, i.e., 3f(x)𝑑x.

We look for solutions (u,Φ)H1(3)×D1,2(3). Now we reduce (1.1) to a single equation with a non-local term. Noting that uLq(3) for all q[2,6], we have u2L65(3) for all uH1(3) and

| u 2 v | ( | u 2 | 6 5 ) 5 6 ( | v | 6 ) 1 6 C ( | u 2 | 6 5 ) 5 6 v D for all  v D 1 , 2 ( 3 ) .

By Riesz theorem, there exists a unique ΦuD1,2(3) such that

(1.6) ϵ 2 Φ u v = u 2 v for all  v D 1 , 2 ( 3 ) .

It follows that Φu satisfies the Poisson equation

- ϵ 2 Δ Φ u = u 2

and

(1.7) Φ u ( x ) = 1 4 π ϵ 2 u 2 ( z ) | x - z | d z = : 1 ϵ 2 ϕ u ( x ) .

Moreover, substituting (1.7) into (1.6) and taking v=ϕu in (1.6), we have

ϕ u D C u 2 .

Substituting Φu into (1.1), we obtain

- ϵ 2 Δ u + u - Φ u u = Q ( x ) | u | u , u H 1 ( 3 ) ,

that is,

(1.8) - ϵ 2 Δ u + u - 1 ϵ 2 ϕ u u = Q ( x ) | u | u , u H 1 ( 3 ) .

Now we consider the functional Iϵ:H1(3) given by

I ϵ ( u ) = 1 2 ( ϵ 2 | u | 2 + u 2 ) - 1 4 ϵ 2 ϕ u ( x ) u 2 - 1 3 Q ( x ) ( u ) + 3 for all  u H 1 ( 3 ) ,

where (u)+ denotes the positive part of u(x).

Denote by w(x) the unique radially positive and non-degenerate solution of the following problem (see [32]):

(1.9) - Δ u + u - ϕ u ( x ) u = u 2 , u H 1 ( 3 ) .

Noting that

| ϕ u ( x ) u 2 | ( | ϕ u | 6 ) 1 6 ( | u | 12 5 ) 5 6 C ϕ u D u 2 C u 4 ,

it follows that Iϵ is a well-defined C1 functional. If uH1(3) is a critical point of it, then the pair (u,Φu) is a classical solution of (1.1).

The main result of this paper is the following.

Theorem 1.1.

Let (Q1) and (Q2) hold. Then for each k=1,2,, there exists ϵ0=ϵ(k) such that for all ϵ(0,ϵ0), problem (1.8) has a solution uϵ of the form

u ϵ = j = 1 k w ( x - x ϵ j ϵ ) + v ϵ

for some points xϵjR3, j=1,,k, and vϵH1(R3), satisfying

x ϵ j x 0 , | x ϵ i - x ϵ j | ϵ + , i j , v ϵ ϵ = o ( ϵ 3 2 )    as  ϵ 0 .

We mainly use the finite-dimensional reduction method to prove our result as in [6, 20, 19, 26, 34]. Since the nonlocal term appears, we have to overcome much difficulties in the reduction process which involves some technical and careful computations. To our knowledge, all previous results on this problem are restricted to solutions with at most one positive peak near x0, where x0 is assumed to be a non-degenerate critical point of Q(x), a strict local maximum point, or some other class of “topologically nontrivial critical points”. Moreover, it is the first time to study (1.1) by applying the finite-dimensional reduction method.

We want to point out that the reduction procedure has been modified here to allow for the degeneracy of the critical point of Q(x). For the classical Schrödinger equation in [26], Noussair and Yan give a example that when x0 is a local maximum point of Q(x), one cannot expect, in general, to have a positive solution with more than one peak concentrating at x0.

The paper is organized as follows. In Section 2, we do the finite reduction. In Section 3, we prove our main result and give some remarks. We put all the technical estimates and some known results to Appendices AC.

2 The Finite-Dimensional Reduction

Denote

w x j , ϵ = w ( x - x j ϵ ) , w x j = w ( x - x j ) , 𝐱 = ( x 1 , x 2 , , x k ) , W 𝐱 , ϵ = j = 1 k w x j , ϵ , W 𝐱 = j = 1 k w x j

and

u , v ϵ = 3 ( ϵ 2 u v + u v ) 𝑑 x .

The norm induced by the product ,ϵ is

u ϵ 2 = 3 ( ϵ 2 | u | 2 + u 2 ( x ) ) 𝑑 x .

Let

H ϵ := { u : u H 1 ( 3 ) , ( ϵ 2 | u | 2 + u 2 ) 𝑑 x < + } .

We use to denote the usual norm in H1(3), that is to say

u = ( 3 ( | u | 2 + u 2 ( x ) ) 𝑑 x ) 1 2 for all  u H 1 ( 3 ) .

Without loss of generality, we assume that x0=0 and Q(0)=1.

Let Br={x3,|x|<r}, and let B¯r be its closure. For δ,R>0, and any positive integer k=1,2,, we define

D ϵ , R , δ k = { ( x 1 , , x k ) 3 k : x j B ¯ δ , j = 1 , , k , | x i - x j | ϵ R  for  i j } .

Denote

E ϵ , k = { φ H 1 ( 3 ) : φ , w x j , ϵ x i j ϵ = 0 , j = 1 , , k , i = 1 , 2 , 3 }

and

M ϵ , R , δ = { ( x 1 , , x k , φ ) : ( x 1 , , x k ) D ϵ , R , δ k , φ E ϵ , k , φ ϵ 2 δ ϵ 3 } .

Set

J ϵ ( x 1 , , x k , φ ) = I ϵ ( j = 1 k w x j , ϵ + φ ) , ( x 1 , , x k , φ ) M ϵ , R , δ .

Then, by direct computations, we have

J ϵ ( x 1 , , x k , φ ) := J ϵ ( 𝐱 , φ ) = I ϵ ( j = 1 k w x j , ϵ + φ ) = I ϵ ( W 𝐱 , ϵ + φ )
= 1 2 [ ϵ 2 | ( W 𝐱 , ϵ + φ ) | 2 + ( W 𝐱 , ϵ + φ ) 2 ] 𝑑 x - 1 16 π ϵ 2 ( W 𝐱 , ϵ + φ ) 2 | x - y | 𝑑 y ( W 𝐱 , ϵ + φ ) 2 𝑑 x
- 1 3 Q ( x ) ( W 𝐱 , ϵ + φ ) + 3 𝑑 x
= { 1 2 ( ϵ 2 | W 𝐱 , ϵ | 2 + W 𝐱 , ϵ 2 ) 𝑑 x - 1 16 π ϵ 2 W 𝐱 , ϵ 2 | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x - 1 3 Q ( x ) ( W 𝐱 , ϵ ) + 3 𝑑 x }
- { [ Q ( x ) ( j = 1 k w x j , ϵ ) 2 φ - j = 1 k w x j , ϵ 2 φ ] d x + 1 4 π ϵ 2 ( j i w x j , ϵ w x i , ϵ | x - y | d y ) j = 1 k w x j , ϵ φ
+ 1 4 π ϵ 2 i j ( w x j , ϵ 2 ( y ) | x - y | d y ) w x i , ϵ φ d x } + { 1 2 ( ϵ 2 | φ | 2 + φ 2 ) d x
- 1 16 π ϵ 2 W 𝐱 , ϵ 2 | x - y | 𝑑 y φ 2 𝑑 x - 1 16 π ϵ 2 φ 2 ( y ) | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x
- 1 4 π ϵ 2 ( W 𝐱 , ϵ φ | x - y | d y ) W 𝐱 , ϵ φ d x - Q ( x ) W 𝐱 , ϵ φ 2 d x }
- { 1 16 π ϵ 2 φ 2 ( y ) | x - y | d y φ 2 ( x ) d x + 1 4 π ϵ 2 W 𝐱 , ϵ φ | x - y | d y φ 2 ( x ) d x
+ 1 3 Q ( x ) [ ( W 𝐱 , ϵ + φ ) + 3 - W 𝐱 , ϵ 3 - 3 W 𝐱 , ϵ 2 φ - 3 W 𝐱 , ϵ φ 2 ] d x }
(2.1) = : J ϵ ( 𝐱 , 0 ) - l ϵ , 𝐱 ( φ ) + 1 2 L ϵ , 𝐱 φ , φ - R ϵ , 𝐱 ( φ ) , φ E ,

where we have used the fact that wxj,ϵ is the unique radial positive solution (up to translations) of

- ϵ 2 Δ u + u - 1 4 π ϵ 2 u 2 ( y ) | x - y | 𝑑 y u = u 2 , x 3 .

In order to find a critical point for Jϵ(𝐱,φ), we need to discuss each term in the expansion (2.1).

Lemma 2.1.

For each uLq(R3)(2q6), we have

| u | q C ϵ 3 ( 1 q - 1 2 ) u ϵ .

Proof.

Letting u~(x)=u(ϵx), we have

| u | q d x = ϵ 3 3 | u ~ | q d x C ϵ 3 ( | u ~ | 2 + u ~ 2 d x ) q 2 = C ϵ 3 [ ϵ - 3 ( ϵ 2 | u | 2 + u 2 ) d x ] q 2 = C ϵ 3 ( 1 - q 2 ) u ϵ q ,

which implies that

| u | q C ϵ 3 ( 1 q - 1 2 ) u ϵ .

Lemma 2.2.

For any u1,u2,u3,u4Hϵ, we have

u 1 ( y ) u 2 ( y ) u 3 ( x ) u 4 ( x ) | x - y | 𝑑 x 𝑑 y C ϵ - 1 u 1 ϵ u 2 ϵ u 3 ϵ u 4 ϵ .

Proof.

Since -Δϕu=u2, we have

| ϕ u | 2 d x = ϕ u u 2 | ϕ u | 6 | u 2 | 6 5 = | ϕ u | 6 | u | 12 5 2 C ϕ u D | u | 12 5 2 ,

which implies that

ϕ u D C | u | 12 5 2 .

Then, by Hölder’s inequality and Lemma 2.1, we have

u 1 ( y ) u 2 ( y ) u 3 ( x ) u 4 ( x ) | x - y | 𝑑 x 𝑑 y 3 ϕ u 1 1 2 ϕ u 2 1 2 u 3 ( x ) u 4 ( x ) 𝑑 x
C | ϕ u 1 | 6 1 2 | ϕ u 2 | 6 1 2 | u 3 | 12 5 | u 4 | 12 5
C | u 1 | 12 5 | u 2 | 12 5 | u 3 | 12 5 | u 4 | 12 5
C ϵ ( 5 12 - 1 2 ) 3.4 u 1 ϵ u 2 ϵ u 3 ϵ u 4 ϵ
= C ϵ - 1 u 1 ϵ u 2 ϵ u 3 ϵ u 4 ϵ .

Lemma 2.3.

There exists a positive constant C independent of ϵ such that

R ϵ , 𝐱 ( i ) ( φ ) ϵ C [ ϵ - 3 φ ϵ + ϵ - 3 2 ] φ ϵ 3 - i , i = 0 , 1 , 2 ,

where Rϵ,𝐱(i)(φ) denotes the i-th derivative of Rϵ,𝐱(φ).

Proof.

Recall that

R ϵ , 𝐱 ( φ ) = 1 16 π ϵ 2 φ 2 ( y ) | x - y | 𝑑 y φ 2 ( x ) 𝑑 x + 1 4 π ϵ 2 W 𝐱 , ϵ φ | x - y | 𝑑 y φ 2 ( x ) 𝑑 x
(2.2) + 1 3 Q ( x ) [ ( W 𝐱 , ϵ + φ ) + 3 - W 𝐱 , ϵ 3 - 3 W 𝐱 , ϵ 2 φ - 3 W 𝐱 , ϵ φ 2 ] 𝑑 x .

It is easy to check that

R ϵ , 𝐱 ( φ ) , ψ = 1 4 π ϵ 2 φ 2 ( y ) | x - y | 𝑑 y φ ( x ) ψ ( x ) 𝑑 x + 1 4 π ϵ 2 W 𝐱 , ϵ ( y ) ψ ( y ) | x - y | 𝑑 y φ 2 ( x ) 𝑑 x
(2.3) + 1 2 π ϵ 2 W 𝐱 , ϵ φ | x - y | 𝑑 y φ ( x ) ψ ( x ) 𝑑 x + Q ( x ) [ ( W 𝐱 , ϵ + φ ) + 2 - W 𝐱 , ϵ 2 - 2 W 𝐱 , ϵ φ ] ψ 𝑑 x

and

R ϵ , 𝐱 ′′ ( φ ) , ( ψ , ξ ) = 1 4 π ϵ 2 φ 2 ( y ) | x - y | 𝑑 y ψ ( x ) ξ ( x ) 𝑑 x + 1 2 π ϵ 2 φ ( y ) ξ ( y ) | x - y | 𝑑 y φ ( x ) ψ ( x ) 𝑑 x
+ 1 2 π ϵ 2 W 𝐱 , ϵ ψ ( y ) | x - y | 𝑑 y φ ( x ) ξ ( x ) 𝑑 x + 1 2 π ϵ 2 W 𝐱 , ϵ ξ ( y ) | x - y | 𝑑 y φ ( x ) ψ ( x ) 𝑑 x
(2.4) + 1 2 π ϵ 2 W 𝐱 , ϵ φ ( y ) | x - y | 𝑑 y ψ ( x ) ξ ( x ) 𝑑 x + 2 Q ( x ) [ ( W 𝐱 , ϵ + φ ) + - W 𝐱 , ϵ ] ψ ξ 𝑑 x .

First, we estimate Rϵ,𝐱(φ). By Lemmas 2.1 and 2.2, we have

| ϕ φ φ 2 𝑑 x | C ϵ - 1 φ ϵ 4 , | ϕ φ W 𝐱 , ϵ φ 𝑑 x | C ϵ - 3 4 ϵ 3 . 5 12 W 𝐱 φ ϵ 3 C ϵ 1 2 φ ϵ 3

and

| Q ( x ) [ ( W 𝐱 , ϵ + φ ) + 3 - W 𝐱 , ϵ 3 - 3 W 𝐱 , ϵ 2 φ - 3 W 𝐱 , ϵ φ 2 ] d x | Q ( x ) | φ | 3 C | φ | 3 C ϵ - 3 2 φ ϵ 3 .

All the estimates above and (2.2) imply that

| R ϵ , 𝐱 ( φ ) | C 1 ϵ 2 [ C ϵ - 1 φ ϵ 4 + C ϵ 1 2 φ ϵ 3 + C ϵ 1 2 φ ϵ 3 ] + C ϵ - 3 2 φ ϵ 3
C ϵ - 3 φ ϵ ϵ 4 + C ϵ - 3 2 φ ϵ 3 + C ϵ - 3 2 φ ϵ 3
(2.5) = C [ ϵ - 3 φ ϵ ϵ 4 + ϵ - 3 2 φ ϵ 3 ] .

Then we estimate Rϵ,𝐱(φ)ϵ. Similar to (2.5), we have

| ϕ φ φ ψ 𝑑 x | C ϵ - 1 φ ϵ 3 ψ ϵ ,
| W 𝐱 , ϵ ψ | x - y | 𝑑 y φ 2 𝑑 x | C ϵ 1 2 φ ϵ 2 ψ ϵ ,
| W 𝐱 , ϵ φ | x - y | 𝑑 y φ ψ 𝑑 x | C ϵ 1 2 φ ϵ 2 ψ ϵ

and

| Q ( x ) [ ( W 𝐱 , ϵ + φ ) + 2 - W 𝐱 , ϵ 2 - 2 W 𝐱 , ϵ φ ] ψ d x | max x 3 Q ( x ) | φ | 2 | ψ | C | φ | 3 2 | ψ | 3 C ϵ - 3 2 φ ϵ 2 ψ ϵ .

All estimates above and (2.3) imply that

| R ϵ , 𝐱 ( φ ) , ψ | C [ ϵ - 3 φ ϵ 3 + ϵ - 3 2 φ ϵ 2 + ϵ - 3 2 φ ϵ 2 ] | ψ ϵ C [ ϵ - 3 φ ϵ 3 + ϵ - 3 2 φ ϵ 2 ] | ψ ϵ ,

which implies that

(2.6) R ϵ , 𝐱 ( φ ) ϵ C [ ϵ - 3 φ ϵ 3 + ϵ - 3 2 φ ϵ 2 ] .

Finally, we estimate Rϵ,𝐱′′(φ). By the same arguments as above, we have

| ϕ φ ψ ξ 𝑑 x | C ϵ - 1 φ ϵ 2 ψ ϵ ξ ϵ ,
| φ ξ | x - y | 𝑑 y φ ψ 𝑑 x | C ϵ - 1 φ ϵ 2 ψ ϵ ξ ϵ ,
| W 𝐱 , ϵ ψ | x - y | 𝑑 y φ ξ 𝑑 x | C ϵ 3 4 ϵ 5 4 φ ϵ ψ ϵ ξ ϵ = C ϵ 1 2 φ ϵ ψ ϵ ξ ϵ ,
| W 𝐱 , ϵ ξ | x - y | 𝑑 y φ ψ 𝑑 x | C ϵ 1 2 φ ϵ ψ ϵ ξ ϵ ,
| W 𝐱 , ϵ φ | x - y | 𝑑 y ψ ξ 𝑑 x | C ϵ 1 2 φ ϵ ψ ϵ ξ ϵ

and

| Q ( x ) [ ( W 𝐱 , ϵ + φ ) + - W 𝐱 , ϵ ] ψ ξ d x | C | φ | | ψ | | ξ | C | φ | 3 | ψ | 3 | ξ | 3 C ϵ - 3 2 φ ϵ ψ ϵ ξ ϵ .

Hence, (2) and the estimates above yield

| R ϵ , 𝐱 ′′ ( φ ) , ( ψ , ξ ) | C [ ϵ - 3 φ ϵ 2 + ϵ - 3 2 φ ϵ + ϵ - 3 2 φ ϵ ] ψ ϵ ξ ϵ ,

which implies that

(2.7) R ϵ , 𝐱 ′′ ( φ ) C [ ϵ - 3 φ ϵ 2 + ϵ - 3 2 φ ϵ ] .

It follows from (2.5), (2.6) and (2.7) that the lemma is true. ∎

Lemma 2.4.

We have

l ϵ , 𝐱 C ϵ 3 2 [ ϵ θ + j = 1 k ( Q ( x j ) - 1 ) + i j e - θ ¯ | x i - x j | ϵ ] φ ϵ ,

where θ and θ¯ are two small positive constants.

Proof.

Recall that

l ϵ , 𝐱 ( φ ) = [ Q ( x ) ( j = 1 k w x j , ϵ ) 2 φ - j = 1 k w x j , ϵ 2 φ ] + 1 4 π ϵ 2 i j w x j , ϵ w x i , ϵ | x - y | 𝑑 y j = 1 k w x j , ϵ φ + 1 ϵ 2 i j ϕ w x j , ϵ w x i , ϵ φ
= ( Q ( x ) - 1 ) j = 1 k w x j , ϵ 2 φ + Q ( x ) [ ( j = 1 k w x j , ϵ ) 2 - j = 1 k w x j , ϵ 2 ] φ
+ 1 4 π ϵ 2 i j w x j , ϵ w x i , ϵ | x - y | 𝑑 y j = 1 k w x j , ϵ φ + 1 ϵ 2 i j ϕ w x j , ϵ w x i , ϵ φ
(2.8) = : L 1 + L 2 + L 3 + L 4 .

We first estimate L1. Note that

L 1 = ( Q ( x ) - 1 ) j = 1 k w x j , ϵ 2 φ = j = 1 k ( Q ( x ) - Q ( x j ) ) w x j , ϵ 2 φ + j = 1 k ( Q ( x j ) - 1 ) w x j , ϵ 2 φ = : L 1 , 1 + L 1 , 2 .

Then we have

L 1 , 1 = B δ ( x j ) j = 1 k ( Q ( x ) - Q ( x j ) ) w x j , ϵ 2 φ d x + 3 B δ ( x j ) j = 1 k ( Q ( x ) - Q ( x j ) ) w x j , ϵ 2 φ d x = : L 1 , 1 , 1 + L 1 , 1 , 2 .

Moreover, by assumption (Q2) and Lemma 2.1, we have

L 1 , 1 , 1 j = 1 k B δ ( x j ) ( Q ( x ) - Q ( x j ) ) w x j , ϵ 2 | φ | d x C j = 1 k B δ ( x j ) | x - x j | θ w x j , ϵ 2 | φ | d x
= j = 1 k B δ ϵ ( 0 ) | ϵ x | θ w 2 ( x ) | φ ( ϵ x + x j ) | ϵ 3 d x
C ϵ 3 + θ j = 1 k ( B δ ϵ ( 0 ) | x | 3 2 θ w 3 ( x ) d x ) 2 3 ( B δ ϵ ( 0 ) | φ ( ϵ x + x j ) | 3 d x ) 1 3
(2.9) C ϵ 3 + θ ( | φ ( x ) | 3 ϵ - 3 d x ) 1 3 C ϵ 2 + θ ϵ - 1 2 φ ϵ = C ϵ 3 2 + θ φ ϵ ,

where we use the following estimate from Lemma A.3:

B δ ϵ ( 0 ) | x | 3 2 θ w 3 ( x ) d x B 1 ( 0 ) | x | 3 2 θ w 3 ( x ) d x + B 1 C ( 0 ) | x | 3 2 θ e - 3 τ | x | d x < + .

By Hölder’s inequality and Lemma A.3, we have

L 1 , 1 , 2 C j = 1 k B δ c ( x j ) w x j , ϵ 2 | φ | 𝑑 x
C j = 1 k B δ ϵ c ( 0 ) w 2 ( x ) | φ ( ϵ x + x j ) | ϵ 3 𝑑 x
C ϵ 3 j = 1 k ( B δ ϵ c ( 0 ) w 3 ( x ) d x ) 2 3 ( B δ ϵ c ( 0 ) | φ ( ϵ x + x j ) | 3 d x ) 1 3
C ϵ 3 j = 1 k ( δ ϵ + e - 3 τ r r 2 d r ) 2 3 ( ϵ - 3 | φ ( x ) | 3 d x ) 1 3
(2.10) C ϵ 3 ( 1 ϵ 2 e - 3 τ δ ϵ ) 2 3 ϵ - 1 ϵ - 1 2 φ ϵ = C ϵ 3 2 + θ φ ϵ .

Combining (2.9) and (2.10), we have

| L 1 , 1 | C ϵ 3 2 + θ φ ϵ .

By Hölder’s inequality and Lemma 2.1, we have

| L 1 , 2 | j = 1 k ( Q ( x j ) - 1 ) w x j , ϵ 2 | φ | 𝑑 x
j = 1 k ( Q ( x j ) - 1 ) w 2 ( x ) | φ ( ϵ x + x j ) | ϵ 3 𝑑 x
j = 1 k ( Q ( x j ) - 1 ) ϵ 3 ( w 3 ( x ) d x ) 2 3 ( | φ ( ϵ x + x j ) | 3 d x ) 1 3
C ϵ 3 j = 1 k ( Q ( x j ) - 1 ) ( | φ ( x ) | 3 ϵ - 3 d x ) 1 3
C ϵ 3 j = 1 k ( Q ( x j ) - 1 ) ϵ - 1 ϵ - 1 2 φ ϵ = C ϵ 3 2 j = 1 k ( Q ( x j ) - 1 ) φ ϵ .

Hence,

(2.11) | L 1 | C [ ϵ 3 2 + θ + ϵ 3 2 j = 1 k ( Q ( x j ) - 1 ) ] φ ϵ = C ϵ 3 2 [ ϵ θ + j = 1 k ( Q ( x j ) - 1 ) ] φ ϵ .

Since Q(x) is bounded, by Hölder’s inequality and Lemmas 2.1, A.4, we have

| L 2 | max x 3 Q ( x ) | i j w x i , ϵ w x j , ϵ φ d x |
C [ ( i j w x i , ϵ w x j , ϵ ) 3 2 d x ] 2 3 ( | φ ( x ) | 3 d x ) 1 3
C ϵ 2 [ ( i j w ( x - x i ϵ ) w ( x - x j ϵ ) ) 3 2 d x ] 2 3 ϵ - 1 2 φ ϵ
= C ϵ 3 2 φ ϵ [ ( i j w ( x ) w ( x - x j - x i ϵ ) ) 3 2 d x ] 2 3
(2.12) = O ( ϵ 3 2 i j e - τ | x j - x i | ϵ ( | x j - x i | ϵ ) 2 ) φ ϵ = O ( ϵ 3 2 i j e - θ ¯ | x j - x i | ϵ ) φ ϵ ,

where 0<θ¯<τ is a small constant.

Now, we estimate L3. By the Hardy–Littlewood–Sobolev inequality, Lemma A.4 and Hölder’s inequality, we have

| L 3 | = | 1 4 π ϵ 2 i j w x j , ϵ w x i , ϵ | x - y | 𝑑 y j = 1 k w x j , ϵ φ d x |
= | ϵ 3 4 π i j w ( y ) w ( y - x i - x j ϵ ) | x - y | 𝑑 y j = 1 k w ( x ) φ ( ϵ x + x j ) d x |
ϵ 3 4 π C | i j w ( y ) w ( y - x i - x j ϵ ) | 6 5 | w ( x ) φ ( ϵ x + x j ) | 6 5
C ϵ 3 i j e - ( τ - τ ¯ ) | x i - x j | ϵ | w | 2 | φ ( ϵ x + x j ) | 3
(2.13) C ϵ 3 i j e - ( τ - τ ¯ ) | x i - x j | ϵ 1 ϵ ϵ - 1 2 φ ϵ = C ϵ 3 2 i j e - θ ¯ | x i - x j | ϵ φ ϵ .

By Lemma B.1, Hölder’s inequality and Lemma B.2, we can estimate L4 as follows:

| L 4 | = | 1 4 π ϵ 2 i j w x j , ϵ 2 ( y ) | x - y | 𝑑 y w x i , ϵ φ 𝑑 x |
= | ϵ 3 4 π i j w 2 ( y - x j - x i ϵ ) | x - y | 𝑑 y w ( x ) φ ( ϵ x + x i ) 𝑑 x |
C ϵ 3 [ i j ( e - τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | l + | x - x i - x j ϵ | - 1 ) 2 w 2 ( x ) d x ] 1 2 | φ ( ϵ x + x j ) | 2
C ϵ 3 [ ( e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ) e - 2 τ | x | ] 1 2 ϵ - 3 2 φ ϵ
(2.14) C ϵ 3 i j [ e - τ | x i - x j | 2 ϵ ( | x i - x j | ϵ ) 3 + ( | x i - x j | ϵ ) - 1 ] ϵ - 3 2 φ ϵ C ϵ 3 2 + θ φ ϵ .

Therefore, from (2.8), (2.11), (2.12), (2.13) and (2.14), we have

l ϵ , 𝐱 C ϵ 3 2 [ ϵ θ + + j = 1 k ( Q ( x j ) - 1 ) + i j e - θ ¯ | x i - x j | ϵ ] ,

and the proof is complete. ∎

The following result implies that Lϵ,𝐱 is invertible in Eϵ,k.

Proposition 2.5.

There exist constants ρ,ϵ0,R0,δ0>0 such that for RR0,ϵ(0,ϵ0],δ(0,δ0],

L ϵ , 𝐱 ρ φ ϵ for all  φ E ϵ , k .

Proof.

We argue by contradiction. Suppose there exist ϵn0, 𝐱n=(x1,n,,xk,n)Dϵn,R,δk and φnEϵ,k such that

(2.15) L ϵ n , 𝐱 n φ n , g = o n ( 1 ) φ n ϵ n g ϵ n for all  g E ϵ , k .

Without loss of generality, we assume that φnϵn2=ϵn3. Fix i{1,2,,k} and let

φ ~ n , i ( x ) = φ n ( ϵ n x + x n , i ) .

We have

( ϵ n 2 | φ n | 2 + φ n 2 ) 𝑑 x = ϵ n 3

and

(2.16) ( | φ ~ n , i | 2 + φ ~ n , i 2 ) 𝑑 x C .

Then it follows from (2.16) that φ~n,i is bounded in H1(3). Thus, there is a subsequence, still denoted by {φ~n,i}, such that, as n,

{ φ ~ n , i φ in  H 1 ( 3 ) , φ ~ n , i φ in  L loc p + 1 ( 3 ) ,  2 p + 1 < 6 , φ ~ n , i φ a.e. in  3 ,

for some φH1(3). Then, by Lemma A.1, we know that

Φ ( φ ~ n , i ) Φ [ φ ] in  D 1 , 2 ( 3 ) .

Now we will prove that φ0. From (2.15), we know that φ~n,i satisfies

( φ ~ n , i g ~ + φ ~ n , i g ~ ) 𝑑 x - 1 4 π φ ~ n , i g ~ | x - y | 𝑑 y ( j = 1 k w ~ ϵ n , x n , i ( x ) ) 2 𝑑 x
- 1 2 π j = 1 k w ~ ϵ n , x n , i ( y ) | x - y | φ ~ n , i 𝑑 y j = 1 k w ~ ϵ n , x n , i ( x ) g ~ d x - 2 Q ( ϵ n x + x n ) j = 1 k w ~ ϵ n , x n , i ( x ) φ ~ n , i g ~ d x
(2.17) = o n ( 1 ) g ~ * , g ~ E ~ n ,

where

w ~ ϵ n , x n , i = w ϵ n , x n , i ( ϵ n x + x n , i ) , g ~ , g ~ * = g ~ * 2 = ( | g ~ | 2 + | g ~ | 2 ) 𝑑 x

and

E ~ n = { g ~ : g ~ ( x - x n , i ϵ n ) E ϵ , k , ( w ~ ϵ n , x n , i x l n , i g ~ + w ~ ϵ n , x n , i x l n , i g ~ ) d x = 0 } for  i = 1 , , k , l = 1 , 2 , 3 .

For any gC0(3), we decompose g as follows:

g = g n + j = 1 k l = 1 3 a n , j , l w ~ ϵ n , x n , j x l n , j for  j = 1 , , k ,

where gnE~n for an,j,l for j=1,,k,l=1,2,3. From the exponential decay of w~ϵn,xn,jxln,j, we know that

( w ~ ϵ n , x n , j x l n , j g ~ n + w ~ ϵ n , x n , j x l n , j g ~ n ) 𝑑 x = o n ( 1 )

and

( w ~ ϵ n , x n , i x l n , i w ~ ϵ n , x n , j x l n , j + w ~ ϵ n , x n , i x l n , i w ~ ϵ n , x n , j x l n , j ) 𝑑 x = o n ( 1 ) ,

for ij and i,j=1,,k. On the other hand, noting that

( | w ~ ϵ n , x n , i x l n , i | 2 + | w ~ ϵ n , x n , i x l n , i | 2 ) 𝑑 x C ,

we can easily check that an,i,l0 as n for ij, while an,j,laj,l up to a subsequence.

Inserting gn(x-xn,iϵn) into equation (2) and letting n, we deduce that

[ ( φ g + φ g ) 𝑑 x - ϕ w φ g 𝑑 x - 1 2 π w ( y ) φ ( y ) | x - y | 𝑑 y w ( x ) g ( x ) 𝑑 x - 2 w φ g 𝑑 x ]
+ l = 1 3 a j , l ( ( φ w x l + φ w x l ) d x - ϕ w φ w x l d x
(2.18) - 1 2 π w ( y ) φ ( y ) | x - y | d y w ( x ) w x l d x - 2 w φ w x l d x ) = 0 .

From the fact that w solves

- Δ w + w - ϕ w w = w 2 in  3 ,

we see that

- Δ w x l + w x l - ϕ w w x l - 1 2 π w ( y ) w x l | x - y | 𝑑 y w ( x ) = 2 w w x l ,

which implies that

(2.19) φ w x l d x + φ w x l 𝑑 x - ϕ w φ w x l 𝑑 x - 1 2 π w ( y ) φ ( y ) | x - y | 𝑑 y w ( x ) w x l 𝑑 x - 2 w φ w x l 𝑑 x = 0 .

It follows from (2.18) and (2.19) that

(2.20) ( φ g + φ g ) 𝑑 x - ϕ w φ g 𝑑 x - 1 2 π w ( y ) φ ( y ) | x - y | 𝑑 y w ( x ) g ( x ) 𝑑 x - 2 w φ g 𝑑 x = 0 .

Since in (2.20), gC0(3) is arbitrary, the non-degeneracy of w yields that there exist bl, l=1,2,3, such that

(2.21) φ = l = 1 3 b l w x l .

Note that φnEϵn,k implies that

(2.22) 3 ( φ w x l + φ w x l ) 𝑑 x = 0 , l = 1 , 2 , 3 .

Equations (2.21) and (2.22) yield φ0.

For i=1,,k, let Bi,R={x3:xBϵnR(xi)}. Then, by Lemma B.1, we have

1 4 π ϵ n 2 W ϵ n , 𝐱 n 2 ( y ) | x - y | 𝑑 y φ n 2 ( x ) 𝑑 x
= ϵ n 3 4 π ( w ( y ) + i j w ( y - x n , i - x n , j ϵ ) ) 2 | x - y | 𝑑 y φ n 2 ( ϵ n x + x n , j ) 𝑑 x
C ϵ n 3 w 2 ( y ) | x - y | 𝑑 y φ n 2 ( ϵ n x + x n , j ) 𝑑 x
    + C ϵ n 3 ( i j e - τ | x - x n , i - x n , j ϵ | l = - 1 2 | x - x n , i - x n , j ϵ | l + | x - x n , i - x n , j ϵ | - 1 ) φ n 2 ( ϵ n x + x n , j ) d x
C ϵ n 3 [ ( e - τ | x | l = - 1 2 | x | l + | x | - 1 ) φ ~ n , j 2 ( x ) ] d x
    + C ϵ n 3 ( i j e - τ | x - x n , i | ϵ l = - 1 2 | x - x n , i ϵ | l + | x - x n , i ϵ | - 1 ) φ n 2 ( x ) d x
C ϵ n 3 [ ( B R ( 0 ) + B R C ( 0 ) ) ( e - τ | x | l = - 1 2 | x | l + | x | - 1 ) φ ~ n , j 2 ( x ) ] d x
    + C ϵ n 3 i = 1 k B i , R ( i j e - τ | x - x n , i | ϵ l = - 1 2 | x - x n , i ϵ | l + | x - x n , i ϵ | - 1 ) φ n 2 ( x ) d x
    + C ϵ n 3 3 i = 1 k B i , R ( i j e - τ | x - x n , i | ϵ l = - 1 2 | x - x n , i ϵ | l + | x - x n , i ϵ | - 1 ) φ n 2 ( x ) d x
C ϵ n 3 [ i = 1 k B i , R ( i j e - τ | x - x n , i | ϵ l = - 1 2 | x - x n , i ϵ | l + | x - x n , i ϵ | - 1 ) 2 d x ] 1 2 ( i = 1 k B i , R φ n 4 ( x ) d x ) 1 2
    + o ( ϵ n 3 ) + C ( e - ( τ - θ ) R + 1 R ) ϵ n 3
(2.23) = o ( ϵ n 3 ) + o R ( 1 ) ϵ n 3 ,

1 2 π ϵ n 2 ( W 𝐱 n , ϵ n ( y ) | x - y | φ n ( y ) d y ) W 𝐱 n , ϵ n ( x ) φ n ( x ) d x 1 2 π ϵ n 2 | W 𝐱 n , ϵ n ( y ) φ n ( y ) | 6 5 | W 𝐱 n , ϵ n ( x ) φ n ( x ) | 6 5
C ϵ n 2 [ B R ( 0 ) W 𝐱 n , ϵ n 6 5 | φ n | 6 5 + 3 i = 1 k B i , R W 𝐱 n , ϵ n 6 5 | φ n | 6 5 ] 5 3
(2.24) o ( ϵ n 3 ) + C e - 2 τ R ϵ n 3 = o ( ϵ n 3 ) + o R ( 1 ) ϵ n 3

and

2 Q ( x ) W 𝐱 n , ϵ n ( x ) φ n 2 ( x ) 𝑑 x = 2 i = 1 k B i , R Q ( x ) ( i = 1 k w ϵ n , x n , i ) φ n 2 ( x ) 𝑑 x + 2 3 i = 1 k B i , R Q ( x ) ( i = 1 k w ϵ n , x n , i ) φ n 2 ( x ) 𝑑 x
(2.25) C ϵ n 3 B R ( 0 ) φ ~ n , i 2 ( x ) 𝑑 x + C ϵ n 3 e - τ R φ ~ n , i 2 ( x ) 𝑑 x = o ( ϵ n 3 ) + o R ( 1 ) ϵ n 3 .

Taking g=φn in (2.14), from (2.23)–(2), we get

o n ( 1 ) φ n ϵ n 2 = o n ( 1 ) ϵ n 3
= L ϵ n , 𝐱 n φ n , φ n
= φ n ϵ n 2 - 1 4 π ϵ n 2 W x n , ϵ n 2 ( y ) | x - y | 𝑑 y φ n 2 ( x ) 𝑑 x
- 1 2 π ϵ n 2 ( W 𝐱 n , ϵ n ( y ) | x - y | φ n ( y ) d y ) W 𝐱 n , ϵ n ( x ) φ n ( x ) d x
- 2 Q ( x ) W 𝐱 n , ϵ n ( x ) φ n 2 ( x ) 𝑑 x
= : φ n ϵ n 2 + o ( ϵ n 3 ) + o R ( 1 ) ϵ n 3 ϵ n 3 + o ( ϵ n 3 ) + o R ( 1 ) ϵ n 3 ,

where oR(1)0 as R, which is impossible. ∎

Proposition 2.6.

Assume that x0=0. Let (Q1) and (Q2) hold. Then for any given integer k=1,2,, there exist constants ϵ0,R0, δ0>0 such that for ϵ(0,ϵ0],R>R0 and δ(0,δ0], there is a C1 map with respect to x from Dϵ,R,δk to Eϵ,k, φϵ=φϵ(x) satisfying φϵEϵ,k and

J ϵ ( 𝐱 , φ ϵ ) φ ϵ , ϕ = 0 for all  ϕ E ϵ , k .

Moreover,

(2.26) φ ϵ ϵ = ϵ 3 2 O ( ϵ θ + j = 1 k ( Q ( x j ) - 1 ) + i j e - θ ¯ | x i - x j | ϵ ) .

Proof.

Differentiating (2.1), we get

J ϵ ( 𝐱 , φ ϵ ) φ ϵ = - l ϵ , 𝐱 + L ϵ , 𝐱 φ ϵ - R ϵ , 𝐱 ( φ ϵ ) .

So, we only need to solve

(2.27) - l ϵ , 𝐱 + L ϵ , 𝐱 φ ϵ - R ϵ , 𝐱 ( φ ϵ ) = 0 .

It follows from Proposition 2.5 that Lϵ,𝐱 is invertible in Eϵ,k. Therefore, (2.27) can be rewritten as

φ ϵ = 𝒜 ( φ ϵ ) = : L ϵ , 𝐱 - 1 l ϵ , 𝐱 + L ϵ , 𝐱 - 1 R ϵ , 𝐱 ( φ ϵ ) .

Set

𝒩 = { φ : φ E ϵ , k , φ ϵ ϵ 3 2 ( ϵ θ - τ ~ + j = 1 k ( Q ( x j ) - 1 ) 1 - τ ~ + i j e - | x i - x j | ϵ ( θ ¯ - τ ~ ) ) } ,

where τ~<min{θ,θ¯} is a small positive number.

It follows from Lemmas 2.3 and 2.4 that

𝒜 ϵ ( φ ϵ ) C l ϵ , 𝐱 + C [ ϵ - 3 φ ϵ ϵ + ϵ - 3 2 ] φ ϵ ϵ 2
C ϵ 3 2 ( ϵ θ + j = 1 k ( Q ( x j ) - 1 ) + i j e - θ | x i - x j | ϵ )
+ C [ ϵ - 3 [ ϵ 3 2 ( ϵ θ - τ ~ + j = 1 k ( Q ( x j ) - 1 ) 1 - τ ~ + i j e - ( θ ¯ - τ ~ ) | x i - x j | ϵ ) ] + ϵ - 3 2 ]
× ϵ 3 ( ϵ θ - τ ~ + j = 1 k ( Q ( x j ) - 1 ) 1 - τ ~ + i j e - ( θ ¯ - τ ~ ) | x i - x j | ϵ ) 2
(2.28) ϵ 3 2 ( ϵ θ - τ ~ + j = 1 k ( Q ( x j ) - 1 ) 1 - τ ~ + i j e - ( θ ¯ - τ ~ ) | x i - x j | ϵ ) .

Thus, 𝒜 maps 𝒩 into 𝒩.

Meanwhile, by Lemma 2.3, we have

𝒜 ( φ ϵ 1 ) - 𝒜 ( φ ϵ 2 ) = L ϵ , 𝐱 - 1 R ϵ , 𝐱 ( φ ϵ 1 ) - L ϵ , 𝐱 - 1 R ϵ , 𝐱 ( φ ϵ 2 )
C R ϵ , 𝐱 ( φ ϵ 1 ) - R ϵ , 𝐱 ( φ ϵ 2 )
C R ϵ , 𝐱 ′′ ( θ φ ϵ 1 + ( 1 - θ ) φ ϵ 2 ) φ ϵ 1 - φ ϵ 2 ϵ
C ( ϵ - 3 φ ϵ 1 ϵ + ϵ - 3 φ ϵ 2 ϵ + ϵ - 3 2 ) ( φ ϵ 1 ϵ + φ ϵ 2 ϵ ) φ ϵ 1 - φ ϵ 2 ϵ
1 2 φ ϵ 1 - φ ϵ 2 ϵ ,

where θ(0,1).

Now applying the contraction mapping theorem, we can find a unique φϵ such that (2.27) holds. Moreover, it follows from (2.28) that (2.26) holds. ∎

3 Proof of our Main Result

In this section we will prove Theorem 1.1.

For ϵ(0,ϵ0], RR0, δ(0,δ0], let φϵ(𝐱) be the C1-map established in Proposition 2.6. Define

J ~ ϵ ( 𝐱 ) = J ϵ ( 𝐱 , φ ϵ ( 𝐱 ) ) , 𝐱 D ϵ , R , δ k .

Let 𝐱ϵ=(xϵ1xϵk)Dϵ,R,δk be any point and define

(3.1) J ~ ϵ ( 𝐱 ϵ ) = max { J ~ ϵ ( 𝐱 ) : 𝐱 D ϵ , R , δ k } .

Now we show that 𝐱ϵ, for small ϵ, is an interior point of Dϵ,R,δk, and hence a critical point of J~ϵ.

Lemma 3.1.

Let xϵ satisfy (3.1). Then, as ϵ0,

x ϵ i 0 , i = 1 , 2 , , k , 𝑎𝑛𝑑    | x ϵ i - x ϵ j | ϵ , i j .

Proof.

It follows from Lemmas 3.1 and C.1 that

J ϵ ( 𝐱 ϵ , φ ϵ ( 𝐱 ϵ ) ) = J ϵ ( 𝐱 ϵ , 0 ) + O ( l ϵ , 𝐱 ϵ 2 + φ ϵ ϵ 2 )
= J ϵ ( 𝐱 ϵ , 0 ) + O ( ϵ 3 ( ϵ 2 θ + i j e - 2 θ ¯ | x i - x j | ϵ + j = 1 k | Q ( x ϵ j ) - 1 | 2 ) )
= ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 𝑑 x - 1 3 j = 1 k Q ( x ϵ j ) w 3 𝑑 x ] - Q ( x ) j = 1 k - 1 w x j , ϵ ( i = j + 1 k w x i , ϵ ) 2 d x
(3.2) + O ( ϵ 3 ( ϵ θ + j = 1 k ( 1 - Q ( x ϵ j ) ) 2 + i j e - θ ¯ | x i - x j | ϵ ) ) .

Let Zϵi=ϵξei, i=1,,k, for some ξ(12,1) and some vectors e1,,ek, with eiej(ij). Then

| Z ϵ i - Z ϵ j | ϵ = | e i - e j | ϵ 1 - ξ as  ϵ 0 .

Therefore, Zϵ=(Zϵ1,,Zϵk)Dϵ,R,δk for ϵ>0 sufficiently small. By (3.1) and (3), we get

J ϵ ( 𝐱 ϵ , φ ϵ ( 𝐱 ϵ ) ) J ϵ ( Z ϵ , φ ϵ ( Z ϵ ) )
ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 d x - 1 3 j = 1 k Q ( Z ϵ j ) | w | 3 3 ] + O ( ϵ 3 ( ϵ θ + j = 1 k | 1 - Q ( Z ϵ j ) | 2 + i j e - θ ¯ | e i - e j | ϵ 1 - ξ ) )
(3.3) = ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 𝑑 x - 1 3 k | w | 3 3 ] + O ( ϵ 3 + θ 1 ) ,

where θ1=min{1-ξ,θ¯}. Then, from (3) and (3.3), we have

ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 𝑑 x - 1 3 j = 1 k Q ( x ϵ j ) | w | 3 3 ] - Q ( x ) i = 1 k - 1 w x i , ϵ ( j = i + 1 k w x j , ϵ ) 2 d x
+ O ( ϵ 3 ( ϵ θ + j = 1 k | 1 - Q ( x ϵ j ) | 2 + i j e - θ ¯ | x i - x j | ϵ ) ) ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 d x - 1 3 k | w | 3 3 ] + O ( ϵ 3 + θ 1 ) .

Therefore,

1 3 j = 1 k ( Q ( x ϵ j ) - 1 ) ϵ 3 | w | 3 3 + Q ( x ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x O ( ϵ 3 ( ϵ θ 1 + j = 1 k | 1 - Q ( x ϵ j ) | 2 + i j e - θ ¯ | x i - x j | ϵ ) ) .

But

Q ( x ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x + | x | δ ( Q ( x ) - 1 ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x
(3.4) + | x | δ ( Q ( x ) - 1 ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x

and

(3.5) | | x | δ ( Q ( x ) - 1 ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x | C ϵ 3 j i | x | δ ϵ w ( x ) w 2 ( x - x ϵ j - x ϵ i ϵ ) 𝑑 x C ϵ 3 j i e - τ | x ϵ i - x ϵ j | ϵ .

From (3.4), (3.5), (Q1) and (Q2), we have

Q ( x ) i = 1 k - 1 w x ϵ i , ϵ ( j = i + 1 k w x ϵ j , ϵ ) 2 d x C ϵ 3 j i e - τ | x ϵ i - x ϵ j | ϵ + O ( ϵ 3 + θ ) ,

where C>0 is a constant. Hence, we have

ϵ 3 i = 1 k ( Q ( x ϵ i ) - 1 ) + C i j ϵ 3 e - τ | x ϵ i - x ϵ j | ϵ O ( ϵ 3 + θ 1 ) ,

which implies that

Q ( x ϵ i ) 1 = Q ( 0 ) , x ϵ i 0 , | x ϵ i - x ϵ j | ϵ + as  ϵ 0 , i , j = 1 , , k , i j .

The proof is complete. ∎

By the above lemma, we can choose xϵ such that xϵi0,|xϵi-xϵj|ϵ, i,j=1,2,,k, ij, and (σ~ϵ,𝐱ϵ)ϵ/xij=0.

Proof of Theorem 1.1.

By Lemma 3.1, we can check that (3.1) is achieved by 𝐱ϵ, which is an interior point of Dϵ,R,δk for small ϵ. It follows from Proposition 2.6 that 𝐱ϵ is a critical point of Jϵ. Using Lemma 2.4, we can complete the proof. ∎

Remark 3.2.

If Q(x) has several strict minimum points, say P1,,Pk, the above arguments may be applied to show that (1.1) has, for any given integers kl, l=1,,m, a solution uϵ of the form

u ϵ = l = 1 m j = 1 k l w ( x - x ϵ , k j ϵ ) + φ ϵ ,

for small enough ϵ, and, as ϵ0,

x ϵ , m j P m , j = 1 , , k l , | x ϵ , m i - x ϵ , m j | ϵ + , i j ,

and

φ ϵ ϵ = o ( ϵ 3 / 2 ) .

Remark 3.3.

The requirement that Q(x) has a strict local minimum may be replaced by the weaker condition that there is a set W3 such that

min W ¯ Q ( x ) < min W Q ( x ) .

We may use the same arguments to construct a solution uϵ of the form

u ϵ = l = 1 k w ( x - x ϵ , k l ϵ ) + φ ϵ ,

for any given positive integer k, provided ϵ=ϵ(k) is small enough, and, as ϵ0,

x ϵ l x 0 l , l = 1 , , k , Q ( x 0 l ) = min W ¯ Q ( x )    and    φ ϵ ϵ = o ( ϵ 3 2 ) .


Communicated by David Ruiz


Award Identifier / Grant number: 11671162

Award Identifier / Grant number: 11571130

Award Identifier / Grant number: 11601194

Funding statement: This paper was partially supported by NSFC (No. 11671162, No. 11571130, No. 11601194) and CCNU18CXTD04.

A Some Known Results

In this section, we give some known results which are useful to us.

Lemma A.1 ([31, Lemma 2.1]).

Denote Φ^[u]=ϕu. Then

  1. Φ ^ is continuous,

  2. Φ ^ maps bounded sets into bounded sets,

  3. if u n u in H 1 ( 3 ) , then Φ ^ [ u n ] Φ ^ [ u ] .

Maybe the following result has been proved somewhere, but since we cannot find it in the literature, we will give its proof for the readers’ convenience.

Lemma A.2.

Let u be a positive radial solution of (1.9). Then there exists τ>0 such that

(A.1) | D α u | C e - τ | x | for  | α | 2 and  τ > 0 .

Proof.

Since u=u(r) is radially symmetric, (1.9) can be written as

(A.2) u ′′ + 2 r u = u - ϕ u u - u 2 .

Let X=ru. Then X satisfies

X ′′ = ( 1 - ϕ u - u ) X = p ( r ) X ,

where p(r)=1-ϕu-u. Since u and ϕu are radially symmetric, u,ϕu0 as r+. Then there exists R>0 such that p(r)12 for all rR. Let Y=X2. Then Y satisfies

1 2 Y ′′ = ( X ) 2 + p ( r ) Y 1 2 Y for  r R .

Therefore, Y′′-Y0 for rR. Set Z=e-r(Y+Y). Then

Z = e - r ( Y ′′ - Y ) 0 .

So Z is a nondecreasing function. We claim that Z(r)<0 for all rR. In fact, if there is R1>R such that Z(R1)>0, then Z(r)Z(R1) for all rR1. However,

Y + Y = e r Z ( r ) e r Z ( R 1 ) > 0 ,

which implies that Y+Y is not integrable for rR. This is a contradiction, since Y,Y are integrable for rR. Hence, Z(r)<0 for all rR. Then

( e r Y ) = e r ( Y + Y ) = Z ( r ) e 2 r 0 ,

which implies that YCe-r, namely, XCe-r2. Noting that u is positive, it follows that

u ( r ) C e - r 2 r ,

which proves (A.1) with α=0. Next we estimate the derivatives of u. From (A.2), we have

( r 2 u ) = - r 2 [ ( ϕ u - 1 ) u + u 2 ] ,

which yields

(A.3) | r 2 u ( r ) | 0 r s 2 | ( ϕ u - 1 ) u + u 2 | 𝑑 s .

Since the integral of the right-hand side of (A.3) has an exponential decay, we conclude that u has also an exponential decay. In the end, the estimate on u′′ follows easily from (A.2). ∎

From the results of Lemma A.2 above, Theorem 1.1 and [32, Remark 3.2], we have the following result for the limit problem which is very crucial to apply the finite-dimensional reduction method to construct solutions.

Lemma A.3.

Problem (1.9) has a unique positive radial solution denoted by w(x). Moreover, the solution w(x) is non-degenerate and its α order derivative satisfies

| D α w | C e - τ | x | for  | α | 2 and  τ > 0 .

Here the non-degeneracy of the solution means that if vH1(R3) satisfies

- Δ v ( x ) + v ( x ) - w ( x ) 2 π w ( y ) v ( y ) | x - y | 𝑑 y - ϕ w v = 2 w ( x ) v ( x ) , x 3 ,

then

v span { w x j , j = 1 , 2 , 3 } .

Lemma A.4 ([3, Lemma 3.7]).

Given u,v:RnR two positive continuous radial functions such that

u ( x ) | x | a e - b | x | , v ( x ) | x | a e - b | x | ( x ) ,

where a,aR,b>0,b>0. Let ξRn tend to infinity. Then, the following asymptotic estimates hold:

  1. If b < b ,

    n u ξ v e - b | ξ | | ξ | a ,

    where u ξ = u ( x - ξ ) . Clearly, if b > b , a similar expression holds, by replacing a and b with a and b .

  2. If b = b , suppose, for simplicity, that a a . Then

    n u ξ v { e - b | ξ | | ξ | a + a + n + 1 2 if  a > - n + 1 2 , e - b | ξ | | ξ | a log ξ if  a = - n + 1 2 , e - b | ξ | | ξ | a if  a < - n + 1 2 .

Lemma A.5 (Hardy–Littlewood–Sobolev inequality).

Let p,r>1, 0<λ<3, 1p+1r+λ3=2, fLp(R3), hLr(R3). Then there exists C(λ,p)>0 such that

3 3 f ( x ) h ( y ) | x - y | λ 𝑑 x 𝑑 y C ( λ , p ) f L p ( 3 ) h L r ( 3 ) .

B Some Technical Estimates

Lemma B.1.

There exists a positive constant C independent of ϵ such that

i j w 2 ( y - x i - x j ϵ ) | x - y | d y C i j [ e - τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | l + | x - x i - x j ϵ | - 1 ] .

Proof.

Denote d=|x-xi-xjϵ|2. Note that when yBd(x),

(B.1) | y - x i - x j ϵ | | x - x i - x j ϵ | - | x - y | | x - x i - x j ϵ | 2 .

Then, from Lemma A.2 and (B.1), we have

B d ( x ) i j w 2 ( y - x i - x j ϵ ) | x - y | 𝑑 y C i j B d ( x ) i j e - 2 τ | y - x i - x j ϵ | | x - y | 𝑑 y
C i j e - τ | x - x i - x j ϵ | B d ( x ) d y | x - y |
(B.2) C i j e - τ | x - x i - x j ϵ | | x - x i - x j ϵ | 2

and

B d ( x i - x j ϵ ) i j w 2 ( y - x i - x j ϵ ) | x - y | 𝑑 y C | x - x i - x j ϵ | B d ( x i - x j ϵ ) i j e - 2 τ | y - x i - x j ϵ | d y
= i j C | x - x i - x j ϵ | [ e - τ | x - x i - x j ϵ | | x - x i - x j ϵ | 2
+ e - τ | x - x i - x j ϵ | | x - x i - x j ϵ | + e - τ | x - x i - x j ϵ | + 1 ]
(B.3) = C i j [ e - τ | x - x i - x j ϵ | l = - 1 1 | x - x i - x j ϵ | l + 1 | x - x i - x j ϵ | ] .

For any y3(Bd(x)Bd(xi-xjϵ)), we have

| y - x | | x - x i - x j ϵ | 2

and

| y - x i - x j ϵ | | x - x i - x j ϵ | 2 .

If

| y - x i - x j ϵ | 2 | x - x i - x j ϵ | ,

then

| x - y | | y - x i - x j ϵ | - | x - x i - x j ϵ | 1 2 | y - x i - x j ϵ | .

If

| y - x i - x j ϵ | 2 | x - x i - x j ϵ | ,

then

| y - x | | x - x i - x j ϵ | 2 1 4 | y - x i - x j ϵ | .

Hence, we have

3 ( B d ( x ) B d ( x i - x j ϵ ) ) i j w 2 ( y - x i - x j ϵ ) | x - y | 𝑑 y C 3 ( B d ( x ) B d ( x i - x j ϵ ) ) i j e - 2 τ | y - x i - x j ϵ | | y - x i - x j ϵ | 𝑑 y
C 3 B d ( x i - x j ϵ ) i j e - 2 τ | y - x i - x j ϵ | | y - x i - x j ϵ | 𝑑 y
(B.4) C i j [ e - τ | x - x i - x j ϵ | | x - x i - x j ϵ | + e - τ | x - x i - x j ϵ | ] .

It follows from (B.2), (B.3) and (B.4) that

i j w 2 ( y - x i - x j ϵ ) | x - y | C i j [ e - τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | l + | x - x i - x j ϵ | - 1 ] .

The proof is complete. ∎

Lemma B.2.

There exists a positive constant C independent of ϵ such that

(B.5) ( e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ) e - 2 τ | x | d x C e - τ | x i - x j | ϵ ( | x i - x j | ϵ ) 6 + C ( | x i - x j | ϵ ) - 2 .

Proof.

To prove this lemma, we mainly apply the idea of [35, Lemma B.2]. Denote d~=|xi-xj|2ϵ. Then

| x | d ~ | x - x i - x j ϵ | | x i - x j | ϵ - | x | | x i - x j | 2 ϵ

and

B d ~ ( 0 ) [ e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ] e - 2 τ | x | d x
C [ e - τ | x i - j | ϵ l = - 1 2 ( | x i - x j | 2 ϵ ) 2 l + ( | x i - x j | 2 ϵ ) - 2 ] B d ~ ( 0 ) e - 2 τ | x | 𝑑 x
C [ e - τ | x i - j | ϵ l = - 1 2 ( | x i - x j | 2 ϵ ) 2 l + ( | x i - x j | 2 ϵ ) - 2 ] [ e - τ | x i - j | ϵ l = 0 2 ( | x i - x j | ϵ ) l + 1 ]
= C [ e - 2 τ | x i - x j | ϵ l = - 2 6 ( | x i - x j | ϵ ) l + e - τ | x i - x j | ϵ l = - 2 0 ( | x i - x j | ϵ ) l + e - τ | x i - x j | ϵ l = - 1 2 ( | x i - x j | ϵ ) 2 l + ( | x i - x j | ϵ ) - 2 ]
(B.6) C e - τ | x i - x j | ϵ ( | x i - x j | ϵ ) 6 + C ( | x i - x j | ϵ ) - 2 .

For xBd~(xi-xjϵ), we have

| x | | x i - x j ϵ | - | x - x i - x j ϵ | | x i - x j | 2 ϵ .

Then

x B d ~ ( x i - x j ϵ ) [ e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ] e - 2 τ | x | d x
C e - τ | x i - x j | ϵ B d ~ ( x i - x j ϵ ) [ e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ] d x
C e - 2 τ | x i - x j ϵ | l = 0 6 ( | x i - x j | ϵ ) l + C e - τ | x i - x j ϵ | | x i - x j | ϵ
(B.7) C e - τ | x i - x j ϵ | ( | x i - x j | ϵ ) 6 .

For any x3(Bd~(0)Bd~(xi-xjϵ)), we have

| x | | x i - x j | 2 ϵ , | x - x i - x j ϵ | | x i - x j | 2 ϵ .

Now we divide it into the following two cases:

  1. | x | 2 | x i - x j | ϵ | x - x i - x j ϵ | | x | - | x i - x j | ϵ | x | 2 ,

  2. | x | 2 | x i - x j | ϵ | x - x i - x j ϵ | | x i - x j | 2 ϵ | x | 4 | x - x i - x j ϵ | | x | 4 .

Then we have

3 ( B d ~ ( 0 ) B d ~ ( x i - x j ϵ ) ) [ e - 2 τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | 2 l + | x - x i - x j ϵ | - 2 ] e - 2 τ | x | d x
C 3 B d ~ ( 0 ) [ e - τ | x | 2 l = - 1 2 | x | 2 l + | x | - 2 ] e - 2 τ | x | 𝑑 x d ~ + [ e - 5 τ 2 r l = 0 3 r 2 l + e - 2 τ r ] 𝑑 r
(B.8) e - 5 τ | x i - x j | 4 ϵ l = 0 6 ( | x i - x j | ϵ ) l + C e - τ | x i - x j | ϵ e - τ | x i - x j | ϵ ( | x i - x j | ϵ ) 6 .

Hence, combining (B.6), (B.7) and (B.8), (B.5) is true. ∎

By the same argument as in the proof of Lemma B.2, we can prove the following lemma.

Lemma B.3.

There exists a positive constant C independent of ϵ such that

( e - τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | l + | x - x i - x j ϵ | - 1 ) e - 2 τ | x | d x C e - τ | x i - x j | 2 ϵ ( | x i - x j | ϵ ) 4 + C ( | x i - x j | ϵ ) - 1 .

C Energy Expansion

In this section, we will give the energy expansion for the approximate solutions.

Lemma C.1.

For any xDϵ,R,δ,x=(x1,,xk), we have

I ϵ ( W 𝐱 , ϵ ) = ϵ 3 [ k 2 w 2 - k 4 ϕ w w 2 𝑑 x - 1 3 i = 1 k Q ( x i ) w 3 𝑑 x ] - Q ( x ) i = 1 k - 1 w x i , ϵ ( j = i + 1 k w x j , ϵ ) 2 d x
+ O ( ϵ 3 + θ + ϵ 3 i = 1 k ( 1 - Q ( x i ) ) 2 + ϵ 3 i < j e - θ ¯ | x i - x j | ϵ ) .

Proof.

Recall that

I ϵ ( W 𝐱 , ϵ ) = 1 2 ( ϵ 2 | W 𝐱 , ϵ | 2 + W 𝐱 , ϵ 2 ) - 1 16 π ϵ 2 W 𝐱 , ϵ 2 ( y ) | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x - 1 3 Q ( x ) | W 𝐱 , ϵ | 3 𝑑 x
= 1 2 j = 1 k ( ϵ 2 | w x j , ϵ | 2 + w x j , ϵ 2 ) + i < j ( ϵ 2 w x i , ϵ w x j , ϵ + w x i , ϵ w x j , ϵ )
- 1 16 π ϵ 2 W 𝐱 , ϵ 2 ( y ) | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x - 1 3 Q ( x ) | W 𝐱 , ϵ | 3 𝑑 x
= k ϵ 3 2 w H 1 2 + ( i < j 1 4 π ϵ 2 w x i , ϵ 2 | x - y | 𝑑 y w x i , ϵ w x j , ϵ 𝑑 x + i < j w x i , ϵ 2 w x j , ϵ 𝑑 x )
(C.1) - 1 16 π ϵ 2 W 𝐱 , ϵ 2 ( y ) | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x - 1 3 Q ( x ) | W 𝐱 , ϵ | 3 𝑑 x .

Note that

Q ( x ) W 𝐱 , ϵ 3 - Q ( x ) j = 1 k w x j , ϵ 3 = Q ( x ) ( j = 2 k w x j , ϵ ) 3 - Q ( x ) j = 2 k w x j , ϵ 3
(C.2) + 3 Q ( x ) w x 1 , ϵ 2 ( j = 2 k w x j , ϵ ) + 3 Q ( x ) w x 1 , ϵ ( j = 2 k w x j , ϵ ) 2 .

Repeating the process of (C.2), we have

Q ( x ) W 𝐱 , ϵ 3 = Q ( x ) j = 1 k w x j , ϵ 3 + 3 Q ( x ) i < j w x i , ϵ 2 w x j , ϵ + 3 Q ( x ) i = 1 k - 1 w x i , ϵ ( j = i + 1 k w x j , ϵ ) 2 .

Also, by assumption (Q2), we have

Q ( x ) w x j , ϵ 3 = B δ ( x j ) Q ( x ) w x j , ϵ 3 + 3 B δ ( x j ) Q ( x ) w x j , ϵ 3
= B δ ( x j ) Q ( x ) w x j , ϵ 3 + O ( 3 B δ ( x j ) e - 3 τ | x - x j | ϵ 𝑑 x )
= B δ ( x j ) Q ( x ) w x j , ϵ 3 + O ( ϵ e - 3 τ δ ϵ ) = B δ ( x j ) Q ( x ) w x j , ϵ 3 + O ( ϵ 3 + θ )
= B δ ( x j ) Q ( x j ) w x j , ϵ 3 + O ( B δ ( x j ) | x - x j | θ e - 3 τ | x - x j | ϵ d x ) + O ( ϵ 3 + θ )
= Q ( x j ) w x j , ϵ 3 - 3 B δ ( x j ) Q ( x j ) w x j , ϵ 3 + O ( ϵ 3 + θ )
= ϵ 3 Q ( x j ) w 3 ( x ) 𝑑 x + O ( ϵ 3 + θ )

and

Q ( x ) w x i , ϵ 2 w x j , ϵ = B δ ( x i ) Q ( x ) w x i , ϵ 2 w x j , ϵ + 3 B δ ( x i ) Q ( x ) w x i , ϵ 2 w x j , ϵ
= B δ ( x i ) Q ( x ) w x i , ϵ 2 w x j , ϵ + O ( B δ c ( x i ) e - 2 τ | 𝐱 - x i | ϵ e - τ | x - x j | ϵ 𝑑 x )
= B δ ( x i ) Q ( x ) w x i , ϵ 2 w x j , ϵ + O ( ϵ 3 e - τ | x i - x j | ϵ )
= B δ ( x i ) Q ( x i ) w x i , ϵ 2 w x j , ϵ + B δ ( x i ) ( Q ( x ) - Q ( x i ) ) w x i , ϵ 2 w x j , ϵ + O ( ϵ 3 + θ )
= B δ ( x i ) Q ( x i ) w x i , ϵ 2 w x j , ϵ + O ( B δ ( x i ) | x - x i | θ w x i , ϵ 2 w x j , ϵ ) + O ( ϵ 3 + θ )
= Q ( x i ) w x i , ϵ 2 w x j , ϵ + O ( ϵ 3 + θ ) .

Now we estimate the term 116πϵ2W𝐱,ϵ2|x-y|𝑑yW𝐱,ϵ2𝑑x. First, by direct computations, we have

1 16 π ϵ 2 W 𝐱 , ϵ 2 | x - y | 𝑑 y W 𝐱 , ϵ 2 𝑑 x
= 1 16 π ϵ 2 j = 1 k w x j , ϵ 2 | x - y | 𝑑 y w x j , ϵ 2 𝑑 x + 1 4 π ϵ 2 i < j w x i , ϵ 2 | x - y | 𝑑 y w x i , ϵ w x j , ϵ 𝑑 x
    + 1 8 π ϵ 2 i < j w x j , ϵ 2 | x - y | 𝑑 y w x i , ϵ 2 𝑑 x + 1 8 π ϵ 2 j = 1 k w x j , ϵ 2 | x - y | 𝑑 y ( i l j w x i , ϵ w x l , ϵ ) 𝑑 x
= k ϵ 3 16 π w 2 ( y ) | x - y | 𝑑 y w 2 ( x ) 𝑑 x + i < j 1 4 π ϵ 2 w x i , ϵ 2 | x - y | 𝑑 y w x i , ϵ w x j , ϵ 𝑑 x
    + 1 8 π ϵ 2 i < j w x j , ϵ 2 | x - y | 𝑑 y w x i , ϵ 2 𝑑 x + 1 8 π ϵ 2 j = 1 k w x j , ϵ 2 | x - y | 𝑑 y ( i l j w x i , ϵ w x l , ϵ ) 𝑑 x
= : k 16 π ϵ 3 w 2 ( y ) | x - y | d y w 2 ( x ) d x + i < j 1 4 π ϵ 2 w x i , ϵ 2 | x - y | d y w x i , ϵ w x j , ϵ d x + F 1 + F 2 .

Now we estimate F1 and F2, respectively. By the Hardy–Littlewood–Sobolev inequality and Lemma A.4, we have

| F 2 | C ϵ 2 | j = 1 k w x j , ϵ 2 | 6 5 | i l j w x i , ϵ w x l , ϵ | 6 5 C ϵ 2 ϵ 5 i l e - τ | x i - x l | ϵ ( | x i - x l | ϵ ) 2 = O ( ϵ 3 + θ ) .

It follows from Lemma B.1 and Lemma B.3 that

| F 1 | C ϵ 2 ϵ 5 | i < j w 2 ( y - x i - x j ϵ ) | x - y | 𝑑 y w 2 ( x ) 𝑑 x |
C ϵ 2 ϵ 5 i < j [ e - τ | x - x i - x j ϵ | l = - 1 2 | x - x i - x j ϵ | l + | x - x i - x j ϵ | - 1 ] e - 2 τ | x | d x
C ϵ 3 i < j [ e - τ | x i - x j | 2 ϵ ( | x i - x j | ϵ ) 4 + ( | x i - x j | ϵ ) - 1 ] O ( ϵ 3 + θ ) .

From all the estimates above, we have

I ϵ ( W 𝐱 , ϵ ) = ϵ 3 [ k 2 w H 1 2 - k 4 ϕ w w 2 𝑑 x - 1 3 j = 1 k Q ( x j ) w 3 𝑑 x ]
(C.3) + i < j ( 1 - Q ( x i ) ) w x i , ϵ 2 w x j , ϵ 𝑑 x - Q ( x ) i = 1 k - 1 w x i , ϵ d x ( j = i + 1 k w x i , ϵ ) 2 + O ( ϵ 3 + θ ) .

Moreover, we have

i < j ( 1 - Q ( x i ) ) w x i , ϵ 2 w x j , ϵ 1 2 i = 1 k ( 1 - Q ( x i ) ) 2 w x i , ϵ 2 θ ¯ 𝑑 x + 1 2 i < j w x i , ϵ 2 ( 2 - θ ^ ) w x j , ϵ 2 𝑑 x
= O ( ϵ 3 i = 1 k ( 1 - Q ( x i ) ) 2 ) + O ( ϵ 3 i < j e - min { 2 , 2 ( 2 - θ ^ ) } τ | x i - x j | ϵ )
= O ( ϵ 3 i = 1 k ( 1 - Q ( x i ) ) 2 ) + O ( ϵ 3 i < j e - 2 τ ϵ | x i - x j | )
= O ( ϵ 3 i = 1 k ( 1 - Q ( x i ) ) 2 + ϵ 3 i < j e - θ ~ | x i - x j | ϵ ) ,

where 0<θ^<2 and θ~<2τ, which, combined with (C.3), implies that (C.1) holds. ∎

Acknowledgements

The authors would like to thank the referee for the insightful and helpful comments on an earlier version of the paper.

References

[1] C. O. Alves and M. Yang, Existence of positive multi-bump solutions for a Schrödinger–Poisson system in 3, Discrete Contin. Dyn. Syst. 36 (2016), no. 11, 5881–5910. 10.3934/dcds.2016058Search in Google Scholar

[2] A. Ambrosetti, On Schrödinger–Poisson systems, Milan J. Math. 76 (2008), 257–274. 10.1007/s00032-008-0094-zSearch in Google Scholar

[3] A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), no. 1, 85–112. 10.1007/s00526-006-0079-0Search in Google Scholar

[4] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), no. 4, 409–420. 10.1142/S0129055X02001168Search in Google Scholar

[5] R. Benguria, H. Brézis and E. H. Lieb, The Thomas–Fermi–von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167–180. 10.1007/BF01942059Search in Google Scholar

[6] D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations 34 (2009), no. 10–12, 1566–1591. 10.1080/03605300903346721Search in Google Scholar

[7] I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), no. 7–8, 1051–1110. 10.1080/03605309208820878Search in Google Scholar

[8] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differential Equations 248 (2010), no. 3, 521–543. 10.1016/j.jde.2009.06.017Search in Google Scholar

[9] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger–Maxwell equations, Commun. Appl. Anal. 7 (2003), no. 2–3, 417–423. Search in Google Scholar

[10] T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 (2004), no. 3, 307–322. 10.1515/ans-2004-0305Search in Google Scholar

[11] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 5, 893–906. 10.1017/S030821050000353XSearch in Google Scholar

[12] T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal. 37 (2005), no. 1, 321–342. 10.1137/S0036141004442793Search in Google Scholar

[13] T. D’Aprile and J. Wei, Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations 25 (2006), no. 1, 105–137. 10.1007/s00526-005-0342-9Search in Google Scholar

[14] I. Ianni, Solutions of the Schrödinger–Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci. 19 (2009), no. 6, 877–910. 10.1142/S0218202509003656Search in Google Scholar

[15] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger–Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008), no. 3, 573–595. 10.1515/ans-2008-0305Search in Google Scholar

[16] I. Ianni and G. Vaira, Solutions of the Schrödinger–Poisson problem concentrating on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci. 19 (2009), no. 5, 707–720. 10.1142/S0218202509003589Search in Google Scholar

[17] Y. Jiang and H.-S. Zhou, Schrödinger–Poisson system with steep potential well, J. Differential Equations 251 (2011), no. 3, 582–608. 10.1016/j.jde.2011.05.006Search in Google Scholar

[18] E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE 2 (2009), no. 1, 1–27. 10.2140/apde.2009.2.1Search in Google Scholar

[19] G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger–Poisson system, J. Math. Phys. 52 (2011), no. 5, Article ID 053505. 10.1063/1.3585657Search in Google Scholar

[20] G. Li, S. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system, Commun. Contemp. Math. 12 (2010), no. 6, 1069–1092. 10.1142/S0219199710004068Search in Google Scholar

[21] E. H. Lieb and B. Simon, The Thomas–Fermi theory of atoms, molecules and solids, Adv. Math. 23 (1977), no. 1, 22–116. 10.1016/0001-8708(77)90108-6Search in Google Scholar

[22] P.-L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33–97. 10.1007/BF01205672Search in Google Scholar

[23] P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger–Newton problem, preprint (2017), https://arxiv.org/abs/1703.00777. 10.1007/s00526-020-1726-6Search in Google Scholar

[24] L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455–467. 10.1007/s00205-008-0208-3Search in Google Scholar

[25] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer, Vienna, 1990. 10.1007/978-3-7091-6961-2Search in Google Scholar

[26] E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc. (2) 62 (2000), no. 1, 213–227. 10.1112/S002461070000898XSearch in Google Scholar

[27] D. Ruiz, Semiclassical states for coupled Schrödinger–Maxwell equations: Concentration around a sphere, Math. Models Methods Appl. Sci. 15 (2005), no. 1, 141–164. 10.1142/S0218202505003939Search in Google Scholar

[28] D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), no. 2, 655–674. 10.1016/j.jfa.2006.04.005Search in Google Scholar

[29] S. Secchi, A note on Schrödinger–Newton systems with decaying electric potential, Nonlinear Anal. 72 (2010), no. 9–10, 3842–3856. 10.1016/j.na.2010.01.021Search in Google Scholar

[30] P. Tod and I. M. Moroz, An analytical approach to the Schrödinger–Newton equations, Nonlinearity 12 (1999), no. 2, 201–216. 10.1088/0951-7715/12/2/002Search in Google Scholar

[31] G. Vaira, Ground states for Schrödinger–Poisson type systems, Ric. Mat. 60 (2011), no. 2, 263–297. 10.1007/s11587-011-0109-xSearch in Google Scholar

[32] G. Vaira, Existence of bound states for Schrödinger–Newton type systems, Adv. Nonlinear Stud. 13 (2013), no. 2, 495–516. 10.1515/ans-2013-0214Search in Google Scholar

[33] Z. Wang and H.-S. Zhou, Positive solution for a nonlinear stationary Schrödinger–Poisson system in 3, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 809–816. 10.3934/dcds.2007.18.809Search in Google Scholar

[34] J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger–Newton equations, J. Math. Phys. 50 (2009), no. 1, Article ID 012905. 10.1063/1.3060169Search in Google Scholar

[35] J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on 𝕊N, J. Funct. Anal. 258 (2010), no. 9, 3048–3081. 10.1016/j.jfa.2009.12.008Search in Google Scholar

[36] C.-L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations 55 (2016), no. 6, Article ID 134. 10.1007/s00526-016-1068-6Search in Google Scholar

[37] M. Yang, Concentration of positive ground state solutions for Schrödinger–Maxwell systems with critical growth, Adv. Nonlinear Stud. 16 (2016), no. 3, 389–408. 10.1515/ans-2015-5047Search in Google Scholar

Received: 2019-04-17
Revised: 2019-09-30
Accepted: 2019-10-03
Published Online: 2019-11-13
Published in Print: 2020-02-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 11.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ans-2019-2066/html
Scroll to top button