Home Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds
Article
Licensed
Unlicensed Requires Authentication

Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds

  • S.V. Divya Rashmi EMAIL logo and V. Venkatesha
Published/Copyright: July 22, 2022

Abstract

In this paper, we aim to study a special type of metric called almost * -η-Ricci soliton on the special class of contact pseudo-Riemannian manifold. First, we prove that a Kenmotsu pseudo-Riemannian metric as an * -η-Ricci soliton is Einstein if either it is η-Einstein or the potential vector field V is an infinitesimal contact transformation. Further, we prove that if a Kenmotsu pseudo-Riemannian manifold admits an almost * -η-Ricci soliton with a Reeb vector field leaving the scalar curvature invariant, then it is an Einstein manifold. Finally, we present an example of * -η-Ricci solitons which illustrate our results.

MSC 2010: 53D20; 53D15; 53D25

References

[1] E. Asgharzadeh and M. Faghfouri, Ricci solitons on contact pseudo-metric manifolds, preprint (2021), https://arxiv.org/abs/2103.05052. Search in Google Scholar

[2] A. Barros and E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012), no. 3, 1033–1040. 10.1090/S0002-9939-2011-11029-3Search in Google Scholar

[3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math. 203, Birkhäuser, Boston, 2002. 10.1007/978-1-4757-3604-5Search in Google Scholar

[4] C. Călin and M. Crâşmăreanu, Eta-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57 (2012), no. 1, 55–63. Search in Google Scholar

[5] X. Chen, Notes on Ricci solitons in f-cosymplectic manifolds, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 3, 242–253. 10.15407/mag13.03.242Search in Google Scholar

[6] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205–212. 10.2748/tmj/1245849443Search in Google Scholar

[7] J. T. Cho and R. Sharma, Contact geometry and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 6, 951–960. 10.1142/S0219887810004646Search in Google Scholar

[8] X. Dai, Non-existence of -Ricci solitons on ( κ , μ ) -almost cosymplectic manifolds, J. Geom. 110 (2019), no. 2, Paper No. 30. 10.1007/s00022-019-0491-1Search in Google Scholar

[9] X. Dai, Y. Zhao and U. Chand De, *-Ricci soliton on ( κ , μ ) -almost Kenmotsu manifolds, Open Math. 17 (2019), no. 1, 874–882. 10.1515/math-2019-0056Search in Google Scholar

[10] S. Dey and S. Roy, -η-Ricci soliton within the framework of Sasakian manifold, J. Dyn. Syst. Geom. Theor. 18 (2020), no. 2, 163–181. 10.1080/1726037X.2020.1856339Search in Google Scholar

[11] A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011), 647–650. 10.1016/j.chaos.2011.05.015Search in Google Scholar

[12] A. Ghosh, Ricci solitons and contact metric manifolds, Glasg. Math. J. 55 (2013), no. 1, 123–130. 10.1017/S0017089512000389Search in Google Scholar

[13] A. Ghosh and D. S. Patra, * -Ricci soliton within the frame-work of Sasakian and ( κ , μ ) -contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 7, Article ID 1850120. 10.1142/S0219887818501207Search in Google Scholar

[14] G. Kaimakamis and K. Panagiotidou, -Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408–413. 10.1016/j.geomphys.2014.09.004Search in Google Scholar

[15] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93–103. 10.2748/tmj/1178241594Search in Google Scholar

[16] P. Majhi, U. C. De and Y. J. Suh, * -Ricci solitons and Sasakian 3-manifolds, Publ. Math. Debrecen 93 (2018), no. 1–2, 241–252. 10.1515/awutm-2017-0019Search in Google Scholar

[17] D. M. Naik and V. Venkatesha, η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 9, Article ID 1950134. 10.1142/S0219887819501342Search in Google Scholar

[18] D. M. Naik, V. Venkatesha and H. A. Kumara, Ricci solitons and certain related metrics on almost co-Kaehler manifolds, Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 4, 402–417. 10.15407/mag16.04.402Search in Google Scholar

[19] D. M. Naik, V. Venkatesha and H. A. Kumara, Certain types of metrics on almost coKähler manifolds, Ann. Math. Québec (2021), 10.1007/s40316-021-00162-w. 10.1007/s40316-021-00162-wSearch in Google Scholar

[20] D. M. Naik, V. Venkatesha and D. G. Prakasha, Certain results on Kenmotsu pseudo-metric manifolds, Miskolc Math. Notes 20 (2019), no. 2, 1083–1099. 10.18514/MMN.2019.2905Search in Google Scholar

[21] D. Perrone, Contact semi-Riemannian structures in CR geometry: Some aspects, Axioms 8 (2019), 10.3390/axioms8010006. 10.3390/axioms8010006Search in Google Scholar

[22] S. Pigola, M. Rigoli, M. Rimoldi and A. G. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 757–799. 10.2422/2036-2145.2011.4.01Search in Google Scholar

[23] R. Sharma, Certain results on K-contact and ( k , μ ) -contact manifolds, J. Geom. 89 (2008), no. 1–2, 138–147. 10.1007/s00022-008-2004-5Search in Google Scholar

[24] V. Venkatesha, H. A. Kumara and D. M. Naik, Almost * -Ricci soliton on paraKenmotsu manifolds, Arab. J. Math. 9 (2020), no. 3, 715–726. 10.1007/s40065-019-00269-7Search in Google Scholar

[25] V. Venkatesha, D. M. Naik and H. A. Kumara, * -Ricci solitons and gradient almost * -Ricci solitons on Kenmotsu manifolds, Math. Slovaca 69 (2019), no. 6, 1447–1458. 10.1515/ms-2017-0321Search in Google Scholar

[26] Y. Wang, Ricci solitons on almost Kenmotsu 3-manifolds, Open Math. 15 (2017), no. 1, 1236–1243. 10.1515/math-2017-0103Search in Google Scholar

[27] Y. Wang, Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), no. 4, 912–922. 10.4153/S0008439518000632Search in Google Scholar

[28] Y. Wang and X. Liu, Almost Kenmotsu pseudo-metric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 62 (2016), no. 1, 241–256. 10.2478/aicu-2014-0030Search in Google Scholar

[29] K. Yano, Integral Formulas in Riemannian Geometry, Pure Appl. Math. 1, Marcel Dekker, New York, 1970. Search in Google Scholar

Received: 2021-11-13
Revised: 2022-03-19
Accepted: 2022-03-23
Published Online: 2022-07-22
Published in Print: 2022-11-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2021-1018/html
Scroll to top button