Home A unified representation for some interpolation formulas
Article
Licensed
Unlicensed Requires Authentication

A unified representation for some interpolation formulas

  • Mohammad Masjed-Jamei ORCID logo , Zahra Moalemi ORCID logo and Wolfram Koepf EMAIL logo
Published/Copyright: July 16, 2020

Abstract

As an extension of Lagrange interpolation, we introduce a class of interpolation formulas and study their existence and uniqueness. In the sequel, we consider some particular cases and construct the corresponding weighted quadrature rules. Numerical examples are finally given and compared.

MSC 2010: 41A05; 65D05

Award Identifier / Grant number: Ref 3.4-IRN-1128637-GF-E

Funding statement: The work of the first author has been supported by the Alexander von Humboldt Foundation under the grant number: Ref 3.4-IRN-1128637-GF-E.

References

[1] C. Brezinski, Historical perspective on interpolation, approximation and quadrature, Handbook of Numerical Analysis. Vol. III, Handb. Numer. Anal. III, North-Holland, Amsterdam (1994), 3–46. 10.1016/S1570-8659(05)80015-8Search in Google Scholar

[2] M. R. Capobianco and M. G. Russo, Uniform convergence estimates for a collocation method for the Cauchy singular integral equation, J. Integral Equations Appl. 9 (1997), no. 1, 21–45. 10.1216/jiea/1181075986Search in Google Scholar

[3] W. Cheney and W. Light, A Course in Approximation Theory, Grad. Stud. Math. 101, American Mathematical Society, Providence, 2009. 10.1090/gsm/101Search in Google Scholar

[4] P. J. Davis, Interpolation and Approximation. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography, Dover Publications, New York, 1975. Search in Google Scholar

[5] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Comput. Sci. Appl. Math., Academic Press, Orlando, 1984. Search in Google Scholar

[6] C. Dişibüyük, A functional generalization of the interpolation problem, Appl. Math. Comput. 256 (2015), 247–251. 10.1016/j.amc.2014.12.152Search in Google Scholar

[7] W. Gautschi, Numerical Analysis. An Introduction, Birkhäuser, Boston, 1997. Search in Google Scholar

[8] W. Gautschi, Interpolation before and after Lagrange, Rend. Semin. Mat. Univ. Politec. Torino 70 (2012), no. 4, 347–368. Search in Google Scholar

[9] J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge Monogr. Appl. Comput. Math. 21, Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511618352Search in Google Scholar

[10] S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Pure Appl. Math. 15, Interscience Publishers John Wiley & Sons, New York, 1966. Search in Google Scholar

[11] M. Masjed-Jamei, New error bounds for Gauss–Legendre quadrature rules, Filomat 28 (2014), no. 6, 1281–1293. 10.2298/FIL1406281MSearch in Google Scholar

[12] M. Masjed-Jamei, G. V. Milovanović and Z. Moalemi, A generalization of divided differences and applications, Filomat 33 (2019), no. 1, 193–210. 10.2298/FIL1901193MSearch in Google Scholar

[13] G. Mastroianni and G. V. Milovanović, Interpolation Processes. Basic Theory and Applications, Springer Monogr. Math., Springer, Berlin, 2008. 10.1007/978-3-540-68349-0Search in Google Scholar

[14] G. Mastroianni and J. Szabados, Barycentric interpolation at equidistant nodes, Jaen J. Approx. 9 (2017), no. 1, 25–36. Search in Google Scholar

[15] D. Occorsio, Extended Lagrange interpolation in weighted uniform norm, Appl. Math. Comput. 211 (2009), no. 1, 10–22. 10.1016/j.amc.2009.01.023Search in Google Scholar

[16] D. Occorsio and M. G. Russo, The Lp-weighted Lagrange interpolation on Markov–Sonin zeros, Acta Math. Hungar. 112 (2006), no. 1–2, 57–84. 10.1007/s10474-006-0064-2Search in Google Scholar

[17] D. Occorsio and M. G. Russo, Extended Lagrange interpolation on the real line, J. Comput. Appl. Math. 259 (2014), no. A, 24–34. 10.1016/j.cam.2013.01.019Search in Google Scholar

[18] I. H. Sloan, Nonpolynomial interpolation, J. Approx. Theory 39 (1983), no. 2, 97–117. 10.1016/0021-9045(83)90085-0Search in Google Scholar

[19] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Texts Appl. Math. 12, Springer, New York, 2002. 10.1007/978-0-387-21738-3Search in Google Scholar

[20] J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific Publishing, Teaneck, 1990. 10.1142/0861Search in Google Scholar

Received: 2019-01-28
Accepted: 2020-07-03
Published Online: 2020-07-16
Published in Print: 2020-08-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2019-0008/pdf
Scroll to top button