Home Tangential derivatives and higher-order regularizing properties of the double layer heat potential
Article
Licensed
Unlicensed Requires Authentication

Tangential derivatives and higher-order regularizing properties of the double layer heat potential

  • Massimo Lanza de Cristoforis ORCID logo EMAIL logo and Paolo Luzzini ORCID logo
Published/Copyright: November 23, 2018

Abstract

We prove an explicit formula for the tangential derivatives of the double layer heat potential. By exploiting such a formula, we prove the validity of a regularizing property for the integral operator associated to the double layer heat potential in spaces of functions with high-order derivatives in parabolic Hölder spaces defined on the boundary of parabolic cylinders which are unbounded in the time variable.

MSC 2010: 31B10

Award Identifier / Grant number: BIRD168373/16

Award Identifier / Grant number: EP/M013545/1

Funding statement: The first author acknowledges the support of the grant EP/M013545/1: “Mathematical Analysis of Boundary-Domain Integral Equations for Nonlinear PDEs” from the EPSRC, UK, and of the project “BIRD168373/16: Singular perturbation problems for the heat equation in a perforated domain” of the University of Padova, Italy and of the Italian INdAM-GNAMPA.

Acknowledgements

This paper represents an extension of part of the work performed by P. Luzzini in his “Laurea Magistrale” dissertation [19] under the guidance of M. Lanza de Cristoforis.

References

[1] E. A. Baderko, Parabolic problems and boundary integral equations, Math. Methods Appl. Sci. 20 (1997), no. 5, 449–459. 10.1002/(SICI)1099-1476(19970325)20:5<449::AID-MMA818>3.0.CO;2-ESearch in Google Scholar

[2] M. Costabel, Boundary integral operators for the heat equation, Integral Equations Operator Theory 13 (1990), no. 4, 498–552. 10.1007/BF01210400Search in Google Scholar

[3] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. 10.1007/978-3-662-00547-7Search in Google Scholar

[4] F. Dondi and M. Lanza de Cristoforis, Regularizing properties of the double layer potential of second order elliptic differential operators, Mem. Differ. Equ. Math. Phys. 71 (2017), 69–110. Search in Google Scholar

[5] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd ed., John Wiley & Sons, New York, 1999. Search in Google Scholar

[6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964. Search in Google Scholar

[7] M. Gevrey, Sur les équations aux dérivées partielle du type parabolique, J. Math. Pures Appl. 9 (1913), 305–471. Search in Google Scholar

[8] M. Gevrey, Sur les équations aux dérivées partielle du type parabolique (suite), J. Math. Pures Appl. 10 (1914), 105–148. Search in Google Scholar

[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math Wiss. 224, Springer, Berlin, 1983. Search in Google Scholar

[10] S. Hofmann and J. L. Lewis, L2 solvability and representation by caloric layer potentials in time-varying domains, Ann. of Math. (2) 144 (1996), no. 2, 349–420. 10.2307/2118595Search in Google Scholar

[11] L. I. Kamynin, On the smoothness of thermal potentials, Differ. Uravn. 1 (1965), 799–839. Search in Google Scholar

[12] L. I. Kamynin, On the smoothness of thermal potentials. II. Thermal potentials on the surface of type L1,1,(1+α)/21,α,α/2, Differ. Uravn. 2 (1966), 647–687. Search in Google Scholar

[13] L. I. Kamynin, On the smoothness of thermal potentials. V. Thermal potentials U,V and W on surfaces of type Π2m+1,1,(1+α)/2m+1,α,α/2 and Π2m+3,α,α/2m+1,1,(1+α)/2 (in Russian), Differ. Uravn. 4 (1968), 347–365. Search in Google Scholar

[14] L. I. Kamynin, On the smoothness of thermal potentials. V. Thermal potentials U, V and W on surfaces of type L2m+1,1,(1+α)/2m+1,α,α/2 and L2m+3,α,α/2m+1,1,(1+α)/2. II (in Russian), Differ. Uravn. 4 (1968), 881–895. Search in Google Scholar

[15] A. N. Konënkov, Smoothness of the double-layer heat potential in Zygmund spaces (in Russian), Differ. Uravn. 43 (2007), no. 8, 1106–1115, 1152; translation in Differ. Equ. 43 (2007), no. 8, 113–1141. 10.1134/S0012266107080113Search in Google Scholar

[16] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type (in Russian), Transl. Math. Monogr. 23, American Mathematical Society, Providence, 1968. 10.1090/mmono/023Search in Google Scholar

[17] M. Lanza de Cristoforis and P. Luzzini, Time dependent boundary norms for kernels and regularizing properties of the double layer heat potential, Eurasian Math. J. 8 (2017), no. 1, 76–118. Search in Google Scholar

[18] J. L. Lewis and M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc. 545 (1995), 1–157. 10.1090/memo/0545Search in Google Scholar

[19] P. Luzzini, Derivate tangenziali del potenziale di doppio strato calorico, Tesi di laurea magistrale, Università degli studi di Padova, 2015. Search in Google Scholar

[20] P. Luzzini, Regularizing properties of the double layer heat potential and shape analysis of a periodic problem, Doctoral dissertation, Università degli studi di Padova, 2018. Search in Google Scholar

[21] G. Miranda, Integral equation solution of the first initial-boundary value problem for the heat equation in domains with non-smooth boundary, Comm. Pure Appl. Math. 23 (1970), 757–765. 10.1002/cpa.3160230505Search in Google Scholar

[22] W. Pogorzelski, Sur la solution de l’équation intégrale dans le problème de Fourier, Ann. Soc. Polon. Math. 24 (1952), 56–74. Search in Google Scholar

[23] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987. 10.1007/978-1-4899-3614-1Search in Google Scholar

[24] V. Tun, Theory of the heat potential. I. Level curves of heat potentials and the inverse problem in the theory of the heat potential, Zh. Vychisl. Mat. Mat. Fiz. 4 (1964), 660–670. 10.1016/0041-5553(64)90004-7Search in Google Scholar

[25] V. Tun, Theory of the heat potential. II. Smoothness of contour heat potentials (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 5 (1965), 474–487. 10.1016/0041-5553(65)90151-5Search in Google Scholar

[26] V. Tun, Theory of the thermal potential. III. Smoothness of a plane thermal potential (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 5 (1965), 658–666. Search in Google Scholar

[27] N. A. Watson, Introduction to Heat Potential Theory, Math. Surveys Monogr. 182, American Mathematical Society, Providence, 2012. 10.1090/surv/182Search in Google Scholar

Received: 2018-02-16
Revised: 2018-10-19
Accepted: 2018-10-20
Published Online: 2018-11-23
Published in Print: 2019-01-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2018-0012/pdf
Scroll to top button