Home Polyhedral compactifications, I
Article
Licensed
Unlicensed Requires Authentication

Polyhedral compactifications, I

  • Corina Ciobotaru , Linus Kramer EMAIL logo and Petra Schwer
Published/Copyright: August 11, 2023
Become an author with De Gruyter Brill

Abstract

In this work we describe horofunction compactifications of metric spaces and finite-dimensional real vector spaces through asymmetric metrics and asymmetric polyhedral norms by means of nonstandard methods, that is, by ultrapowers of the spaces at hand. The polyhedral compactifications of the vector spaces carry the structure of stratified spaces with the strata indexed by dual faces of the polyhedral unit ball. Explicit neighborhood bases and descriptions of the horofunctions are provided.

  1. Communicated by: R. Weiss

Acknowledgements

The authors would like to thank Andreas Berning, Siegfried Echterhoff, Gaiane Panina and the referee for helpful remarks.

References

[1] J. L. Bell, A. B. Slomson, Models and ultraproducts: An introduction. North-Holland 1969. MR0269486 Zbl 0179.31402Search in Google Scholar

[2] C. D. Bennett, Affine Λ-buildings. I. Proc. London Math. Soc. (3) 68 (1994), 541–576. MR1262308 Zbl 0834.2002610.1112/plms/s3-68.3.541Search in Google Scholar

[3] C. D. Bennett, P. N. Schwer, On axiomatic definitions of non-discrete affine buildings. Adv. Geom. 14 (2014), 381–412. MR3228889 Zbl 1408.5100910.1515/advgeom-2014-0017Search in Google Scholar

[4] A. Borel, L. Ji, Compactifications of symmetric and locally symmetric spaces. Birkhäuser Boston, Inc., Boston, MA 2006. MR2189882 Zbl 1100.2200110.4310/jdg/1146169912Search in Google Scholar

[5] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6. Springer 2002. MR1890629 Zbl 0983.1700110.1007/978-3-540-89394-3Search in Google Scholar

[6] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften. Springer 1999. MR1744486 Zbl 0988.5300110.1007/978-3-662-12494-9Search in Google Scholar

[7] B. Brill, Eine Familie von Kompaktifizierungen affine Gebäude. PhD thesis, Frankfurt, 2006.Search in Google Scholar

[8] C. Charignon, Compactifications polygonales d’un immeuble affine. Preprint 2009, arXiv:0903.0502v1 [math.GR]Search in Google Scholar

[9] C. Ciobotaru, L. Kramer, P. Schwer, Polyhedral compactifications, II. In preparation.Search in Google Scholar

[10] J. Dugundji, Topology. Allyn and Bacon, Inc., Boston, Mass. 1966. MR0193606 Zbl 0144.21501Search in Google Scholar

[11] W. Fulton, Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton Univ. Press 1993. MR1234037 Zbl 0813.1403910.1515/9781400882526Search in Google Scholar

[12] M. Gromov, Hyperbolic manifolds, groups and actions. In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., 183–213, Princeton Univ. Press 1981. MR624814 Zbl 0467.5303510.1515/9781400881550-016Search in Google Scholar

[13] Y. Guivarc’h, L. Ji, J. C. Taylor, Compactifications of symmetric spaces. Birkhäuser Boston, Inc., Boston, MA 1998. MR1633171 Zbl 1053.31006Search in Google Scholar

[14] A. W. Gutiérrez, The horofunction boundary of finite-dimensional ℓp spaces. Colloq. Math. 155 (2019), 51–65. MR3887188 Zbl 1415.5101510.4064/cm7320-3-2018Search in Google Scholar

[15] T. Haettel, A. Schilling, C. Walsh, A. Wienhard, Horofunction compactifications of symmetric spaces. Preprint 2017, arXiv:1705.05026v2 [math.DG]Search in Google Scholar

[16] P. Hitzelberger, Generalized affine buildings: Automorphisms, affine Suzuki–Ree-buildings and convexity. PhD thesis, Münster, 2009, arXiv:0902.1107v1 [math.MG]Search in Google Scholar

[17] L. Ji, A. Schilling, Polyhedral horofunction compactification as polyhedral ball. Preprint 2016, arXiv:1607.00564v2 [math.GT]Search in Google Scholar

[18] L. Ji, A.-S. Schilling, Toric varieties vs. horofunction compactifications of polyhedral norms. Enseign. Math. 63 (2017), 375–401. MR3852176 Zbl 1402.1406510.4171/LEM/63-3/4-6Search in Google Scholar

[19] M. Kapovich, B. Leeb, Finsler bordifications of symmetric and certain locally symmetric spaces. Geom. Topol. 22 (2018), 2533–2646. MR3811766 Zbl 1417.5305810.2140/gt.2018.22.2533Search in Google Scholar

[20] A. Karlsson, V. Metz, G. A. Noskov, Horoballs in simplices and Minkowski spaces. Int. J. Math. Math. Sci. 2006, Art. ID 23656, 20 pages. MR2268510 Zbl 1144.5201610.1155/IJMMS/2006/23656Search in Google Scholar

[21] J. L. Kelley, I. Namioka, Linear topological spaces. Springer 1976. MR0394084 Zbl 0318.46001Search in Google Scholar

[22] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR1608566 Zbl 0910.5303510.1007/BF02698902Search in Google Scholar

[23] L. Kramer, R. M. Weiss, Coarse equivalences of Euclidean buildings. Adv. Math. 253 (2014), 1–49. MR3148544 Zbl 1327.5101510.1016/j.aim.2013.10.031Search in Google Scholar

[24] E. Landvogt, A compactification of the Bruhat-Tits building. Springer 1996. MR1441308 Zbl 0935.2003410.1007/BFb0094594Search in Google Scholar

[25] B. Rémy, A. Thuillier, A. Werner, Bruhat-Tits theory from Berkovich’s point of view. II Satake compactifications of buildings. J. Inst. Math. Jussieu 11 (2012), 421–465. MR2905310 Zbl 1241.5100310.1017/S1474748011000168Search in Google Scholar

[26] A. Robinson, Introduction to model theory and to the metamathematics of algebra. North-Holland 1963. MR0153570 Zbl 0118.25302Search in Google Scholar

[27] R. T. Rockafellar, R. J.-B. Wets, Variational analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer 1998. MR1491362 Zbl 0888.4900110.1007/978-3-642-02431-3Search in Google Scholar

[28] H. H. Schaefer, Topological vector spaces. Springer 1971. MR0342978 Zbl 0217.1600210.1007/978-1-4684-9928-5Search in Google Scholar

[29] P. N. Schwer, K. Struyve, Λ-buildings and base change functors. Geom. Dedicata 157 (2012), 291–317. MR2893490 Zbl 1267.5101010.1007/s10711-011-9611-2Search in Google Scholar

[30] C. Walsh, The horofunction boundary of finite-dimensional normed spaces. Math. Proc. Cambridge Philos. Soc. 142 (2007), 497–507. MR2329698 Zbl 1163.5304810.1017/S0305004107000096Search in Google Scholar

[31] A. Werner, Compactifications of Bruhat-Tits buildings associated to linear representations. Proc. Lond. Math. Soc. (3) 95 (2007), 497–518. MR2352569 Zbl 1131.2001910.1112/plms/pdm019Search in Google Scholar

Received: 2022-10-04
Revised: 2023-05-02
Published Online: 2023-08-11
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0018/pdf?lang=en
Scroll to top button