Abstract
We give a Lefschetz formula for tree lattices and apply it to geometric zeta functions. We further generalize Bass’s approach to Ihara zeta functions to the higher-dimensional case of a building.
Communicated by: H. Van Maldeghem
-
Funding: The third author was funded by DFG grant DE 436/10-1.
References
[1] P. Abramenko, K. S. Brown, Buildings. Springer 2008. MR2439729 Zbl 1214.2003310.1007/978-0-387-78835-7Search in Google Scholar
[2] N. Anantharaman, S. Zelditch, Patterson-Sullivan distributions and quantum ergodicity. Ann. Henri Poincaré 8 (2007), 361–426. MR2314452 Zbl 1187.8117510.1007/s00023-006-0311-7Search in Google Scholar
[3] W. Ballmann, M. Brin, Orbihedra of nonpositive curvature. Inst. Hautes Études Sci. Publ. Math. no. 82 (1995), 169–209 (1996). MR1383216 Zbl 0866.5302910.1007/BF02698640Search in Google Scholar
[4] H. Bass, The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math. 3 (1992), 717–797. MR1194071 Zbl 0767.1102510.1142/S0129167X92000357Search in Google Scholar
[5] N. Bourbaki, Integration. II. Chapters 7–9. Springer 2004. MR2098271 Zbl 1095.28002Search in Google Scholar
[6] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Springer 1999. MR1744486 Zbl 0988.5300110.1007/978-3-662-12494-9Search in Google Scholar
[7] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. no. 41 (1972), 5–251. MR0327923 Zbl 0254.1401710.1007/BF02715544Search in Google Scholar
[8] A. Deitmar, Torus actions on compact quotients. J. Lie Theory 6 (1996), 179–190. MR1424631 Zbl 0881.22005Search in Google Scholar
[9] A. Deitmar, Geometric zeta-functions on p-adic groups. Math. Japon. 47 (1998), 1–17. MR1606279 Zbl 1053.11537Search in Google Scholar
[10] A. Deitmar, Geometric zeta functions of locally symmetric spaces. Amer. J. Math. 122 (2000), 887–926. MR1781924 Zbl 0999.2201510.1353/ajm.2000.0037Search in Google Scholar
[11] A. Deitmar, Class numbers of orders in cubic fields. J. Number Theory 95 (2002), 150–166. MR1924095 Zbl 1052.1107810.1016/S0022-314X(01)92754-4Search in Google Scholar
[12] A. Deitmar, A prime geodesic theorem for higher rank spaces. Geom. Funct. Anal. 14 (2004), 1238–1266. MR2135166 Zbl 1102.1102810.1007/s00039-004-0490-7Search in Google Scholar
[13] A. Deitmar, A discrete Lefschetz formula. Topology Appl. 153 (2006), 2363–2381. MR2243717 Zbl 1161.1134610.1016/j.topol.2005.08.012Search in Google Scholar
[14] A. Deitmar, A higher rank Lefschetz formula. J. Fixed Point Theory Appl. 2 (2007), 1–40. MR2336497 Zbl 1205.5801410.1007/s11784-007-0028-3Search in Google Scholar
[15] A. Deitmar, S. Echterhoff, Principles of harmonic analysis. Springer 2014. MR3289059 Zbl 1300.4300110.1007/978-3-319-05792-7Search in Google Scholar
[16] A. Deitmar, W. Hoffmann, Asymptotics of class numbers. Invent. Math. 160 (2005), 647–675. MR2178705 Zbl 1102.1106010.1007/s00222-004-0423-ySearch in Google Scholar
[17] A. Deitmar, M.-H. Kang, Geometric zeta functions for higher rank p-adic groups. Illinois J. Math. 58 (2014), 719–738. MR3395960 Zbl 1377.1110210.1215/ijm/1441790387Search in Google Scholar
[18] A. Deitmar, M.-H. Kang, Tree-lattice zeta functions and class numbers. Michigan Math. J. 67 (2018), 617–645. MR3835566 Zbl 0696998610.1307/mmj/1529460323Search in Google Scholar
[19] A. Deitmar, R. McCallum, A prime geodesic theorem for higher rank buildings. Kodai Math. J. 41 (2018), 440–455. MR3824861 Zbl 0693646310.2996/kmj/1530496852Search in Google Scholar
[20] P. Garrett, Buildings and classical groups. Chapman & Hall, London 1997. MR1449872 Zbl 0933.2001910.1007/978-94-011-5340-9Search in Google Scholar
[21] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Univ. Press 1990. MR1066460 Zbl 0725.2002810.1017/CBO9780511623646Search in Google Scholar
[22] Y. Ihara, Discrete subgroups of PL(2, k℘). In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 272–278, Amer. Math. Soc. 1966. MR0205952 Zbl 0261.2002910.1090/pspum/009/0205952Search in Google Scholar
[23] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan 18 (1966), 219–235. MR0223463 Zbl 0158.2770210.2969/jmsj/01830219Search in Google Scholar
[24] A. Juhl, Cohomological theory of dynamical zeta functions. Birkhäuser, Basel 2001. MR1808296 Zbl 1099.3701710.1007/978-3-0348-8340-5Search in Google Scholar
[25] Y. A. Kordyukov, Index theory and noncommutative geometry on manifolds with foliations (Russian). Uspekhi Mat. Nauk 64 (2009), no. 2 (386), 73–202. English: Russian Math. Surveys 64 (2009), no. 2, 27–391. MR2530918 Zbl 1180.58006Search in Google Scholar
[26] B. Margaux, The structure of the group G(k[t]): variations on a theme of Soulé. Algebra Number Theory 3 (2009), 393–409. MR2525556 Zbl 1178.2004310.2140/ant.2009.3.393Search in Google Scholar
[27] J. Parkinson, Buildings and Hecke algebras. J. Algebra 297 (2006), 1–49. MR2206366 Zbl 1095.2000310.1016/j.jalgebra.2005.08.036Search in Google Scholar
[28] R. S. Pierce, Associative algebras. Springer 1982. MR674652 Zbl 0497.1600110.1007/978-1-4757-0163-0Search in Google Scholar
[29] I. Reiner, Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. Oxford Univ. Press 2003. MR1972204 Zbl 1024.16008Search in Google Scholar
[30] P. Sarnak, Class numbers of indefinite binary quadratic forms. J. Number Theory 15 (1982), 229–247. MR675187 Zbl 0499.1002110.1016/0022-314X(82)90028-2Search in Google Scholar
[31] J.-P. Serre, Trees. Springer 2003. MR1954121 Zbl 1013.20001Search in Google Scholar
[32] C. Soulé, Chevalley groups over polynomial rings. In: Homological group theory (Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., 359–367, Cambridge Univ. Press 1979. MR564437 Zbl 0437.2003610.1017/CBO9781107325449.022Search in Google Scholar
[33] T. Tamagawa, On discrete subgroups of p-adic algebraic groups. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 11–17, Harper & Row, New York 1965. MR0195864 Zbl 0158.27801Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the order sequence of an embedding of the Ree curve
- 𝔇⊥-parallel normal Jacobi operators for Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka–Webster connection
- A Krasnosel’skii-type theorem for certain orthogonal polytopes starshaped via k-staircase paths
- Higher algebraic structures in Hamiltonian Floer theory
- Additive structures on f-vector sets of polytopes
- The degree of the tangent and secant variety to a projective surface
- Building lattices and zeta functions
- Quaternionic equiangular lines
- Non-reduced moduli spaces of sheaves on multiple curves
Articles in the same Issue
- Frontmatter
- On the order sequence of an embedding of the Ree curve
- 𝔇⊥-parallel normal Jacobi operators for Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka–Webster connection
- A Krasnosel’skii-type theorem for certain orthogonal polytopes starshaped via k-staircase paths
- Higher algebraic structures in Hamiltonian Floer theory
- Additive structures on f-vector sets of polytopes
- The degree of the tangent and secant variety to a projective surface
- Building lattices and zeta functions
- Quaternionic equiangular lines
- Non-reduced moduli spaces of sheaves on multiple curves