Abstract
In this paper we compute the Weierstrass order-sequence associated with a certain linear series on the DeligneβLusztig curve of Ree type. As a result, we show that the set of Weierstrass points of this linear series consists entirely of π½q-rational points.
Communicated by: G. KorchmΓ‘ros
Acknowledgements
I would like to thank the anonymous referee for his/her detailed comments which improved the exposition of this paper.
7 Appendix
In the following tables, an asterisk in row i and column f indicates that i is in the set Sf described in Section 3. In particular, Di f = 0 wherever there is a blank entry in the table. The first table involves functions of type 1 and the second table involves functions of type 2.
i | x | w1 | w2 | w3 | w6 | w8 |
---|---|---|---|---|---|---|
0 | β | β | β | β | β | β |
1 | β | β | β | β | β | β |
3q0 | β | β | β | β | β | |
3q0 + 1 | β | β | β | β | β | |
q | β | β | β | β | β | |
q + 1 | β | β | β | β | ||
q + 3q0 | β | β | β | β | β | |
q + 3q0 + 1 | β | β | β | β | ||
2q | β | β | β | β | ||
2q + 1 | β | β | β | |||
2q + 3q0 | β | β | β | β | ||
2q + 3q0 + 1 | β | β | β | |||
3q | β | β | β | |||
3q + 3q0 | β | β | β | |||
3qq0 | β | β | β | β | β | |
3qq0 + 1 | β | β | β | β | ||
3qq0 + 3q0 | β | β | ||||
3qq0 + 3q0 + 1 | β | β | ||||
3qq0 + q | β | β | β | β | β | |
3qq0 + q+1 | β | β | β | β | ||
3qq0 + q + 3q0 | β | β | ||||
3qq0 + q + 3q0 + 1 | β | β | ||||
3qq0 + 2q | β | β | β | β | ||
3qq0 + 2q + 1 | β | β | β | |||
3qq0 + 2q + 3q0 | β | β | ||||
3qq0 + 2q + 3q0 + 1 | β | β | ||||
3qq0 + 3q | β | β | β | |||
3qq0 + 3q + 3q0 | β | β | ||||
6qq0 | β | β | ||||
6qq0 + 1 | β | β | ||||
6qq0 + q | β | β | ||||
6qq0 + q + 1 | β | β | ||||
6qq0 + 2q | β | β | ||||
6qq0 + 2q + 1 | β | β | ||||
6qq0 + 3q | β | β | ||||
q2 | β | β | β | β | β |
i | y | z | w4 | w7 | w5 | w9 | w10 |
---|---|---|---|---|---|---|---|
0 | β | β | β | β | β | β | β |
1 | β | β | β | β | β | β | β |
q0 | β | β | β | β | β | β | β |
q0 + 1 | β | β | β | β | β | β | β |
2q0 | β | β | β | β | β | β | |
2q0 + 1 | β | β | β | β | β | β | |
3q0 | β | β | β | ||||
3q0 + 1 | β | β | β | ||||
q | β | β | β | β | β | β | β |
q + 1 | β | β | β | β | β | ||
q + q0 | β | β | β | β | β | β | β |
q + q0 + 1 | β | β | β | β | β | ||
q + 2q0 | β | β | β | β | β | β | |
q + 2q0 + 1 | β | β | β | β | β | ||
q + 3q0 | β | β | β | ||||
q + 3q0 + 1 | β | β | β | ||||
2q | β | β | β | β | β | ||
2q + 1 | β | β | |||||
2q + q0 | β | β | β | β | β | ||
2q + 2q0 | β | β | β | β | β | ||
2q + 3q0 | β | β | β | ||||
2q + 3q0 + 1 | β | β | |||||
3q | β | β | |||||
3q + 3q0 | β | β | |||||
qq0 | β | β | β | β | β | β | β |
qq0 + 1 | β | β | β | β | β | ||
qq0 + q0 | β | β | β | β | β | ||
qq0 + q0 + 1 | β | β | β | β | β | ||
qq0 + 2q0 | β | β | β | β | |||
qq0 + 2q0 + 1 | β | β | β | β | |||
qq0 + 3q0 | β | β | β | ||||
qq0 + 3q0 + 1 | β | β | β | ||||
qq0 + q | β | β | β | β | β | β | β |
qq0 + q + 1 | β | β | β | β | β | ||
qq0 + q+q0 | β | β | β | β | β | ||
qq0 + q+q0 + 1 | β | β | β | β | β | ||
qq0 + q + 2q0 | β | β | β | β | |||
qq0 + q + 2q0 + 1 | β | β | β | β | |||
qq0 + q + 3q0 | β | β | β | ||||
qq0 + q + 3q0 + 1 | β | β | β | ||||
qq0 + 2q | β | β | β | β | β | ||
qq0 + 2q + 1 | β | β | |||||
qq0 + 2q + q0 | β | β | β | β | β | ||
qq0 + 2q + 2q0 | β | β | β | β | |||
qq0 + 2q + 3q0 | β | β | β | ||||
qq0 + 2q + 3q0 + 1 | β | β | |||||
qq0 + 3q | β | β | |||||
qq0 + 3q + 3q0 | β | β | |||||
2qq0 | β | β | β | β | β | β | |
2qq0 + 1 | β | β | β | β | β | ||
2qq0 + q0 | β | β | β | β | |||
2qq0 + q0 + 1 | β | β | β | β | |||
2qq0 + 2q0 | β | β | β | ||||
2qq0 + 2q0 + 1 | β | β | β | ||||
2qq0 + 3q0 | β | ||||||
2qq0 + 3q0 + 1 | β |
References
[1] M. AbdΓ³n, F. Torres, On π½q2-maximal curves of genus
[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235β265. MR1484478 Zbl 0898.6803910.1006/jsco.1996.0125Search in Google Scholar
[3] A. Eid, I. Duursma, Smooth embeddings for the Suzuki and Ree curves. In: Algorithmic arithmetic, geometry, and coding theory, volume 637 of Contemp. Math., 251β291, Amer. Math. Soc. 2015. MR3364452 Zbl 0659238510.1090/conm/637/12763Search in Google Scholar
[4] S. Fanali, M. Giulietti, On maximal curves with Frobenius dimension 3. Des. Codes Cryptogr. 53 (2009), 165β174. MR2545690 Zbl 1185.1104210.1007/s10623-009-9302-2Search in Google Scholar
[5] S. Fanali, M. Giulietti, On some open problems on maximal curves. Des. Codes Cryptogr. 56 (2010), 131β139. MR2658926 Zbl 1273.1109810.1007/s10623-010-9389-5Search in Google Scholar
[6] R. Fuhrmann, A. Garcia, F. Torres, On maximal curves. J. Number Theory 67 (1997), 29β51. MR1485426 Zbl 0914.1103610.1006/jnth.1997.2148Search in Google Scholar
[7] R. Fuhrmann, F. Torres, On Weierstrass points and optimal curves. Rend. Circ. Mat. Palermo (2) Suppl. no. 51 (1998), 25β46. MR1631013 Zbl 1049.11062Search in Google Scholar
[8] A. GarcΓa, M. Homma, Frobenius order-sequences of curves. In: Algebra and number theory (Essen, 1992), 27β41, de Gruyter 1994. MR1285362 Zbl 0824.14019Search in Google Scholar
[9] J. P. Hansen, J. P. Pedersen, Automorphism groups of Ree type, Deligne-Lusztig curves and function fields. J. Reine Angew. Math. 440 (1993), 99β109. MR1225959 Zbl 0769.14009Search in Google Scholar
[10] J. W. P. Hirschfeld, G. KorchmΓ‘ros, F. Torres, Algebraic curves over a finite field. Princeton Univ. Press 2008. MR2386879 Zbl 1200.1104210.1515/9781400847419Search in Google Scholar
[11] D. M. Kane, Canonical projective embeddings of the Deligne-Lusztig curves associated to 2A2, 2B2, and 2G2. Int. Math. Res. Not. 2016, no. 4, 1158β1189. MR3493445 Zbl 1379.1402510.1093/imrn/rnv169Search in Google Scholar
[12] J. P. Pedersen, A function field related to the Ree group. In: Coding theory and algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in Math., 122β131, Springer 1992. MR1186420 Zbl 0806.1105510.1007/BFb0087997Search in Google Scholar
[13] H.-G. RΓΌck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields. J. Reine Angew. Math. 457 (1994), 185β188. MR1305281 Zbl 0802.11053Search in Google Scholar
[14] F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen. II. Allgemeine Theorie der WeierstraΓ punkte. Math. Z. 45 (1939), 75β96. MR1545805 Zbl 0020.1020210.1007/BF01580274Search in Google Scholar
[15] D. C. Skabelund, New maximal curves as ray class fields over Deligne-Lusztig curves. Proc. Amer. Math. Soc. 146 (2018), 525β540. MR3731688 Zbl 0681640310.1090/proc/13753Search in Google Scholar
[16] K.-O. StΓΆhr, J. F. Voloch, Weierstrass points and curves over finite fields. Proc. London Math. Soc. (3) 52 (1986), 1β19. MR812443 Zbl 0593.1402010.1112/plms/s3-52.1.1Search in Google Scholar
Β© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the order sequence of an embedding of the Ree curve
- πβ₯-parallel normal Jacobi operators for Hopf hypersurfaces in complex two-plane Grassmannians with generalized TanakaβWebster connection
- A Krasnoselβskii-type theorem for certain orthogonal polytopes starshaped via k-staircase paths
- Higher algebraic structures in Hamiltonian Floer theory
- Additive structures on f-vector sets of polytopes
- The degree of the tangent and secant variety to a projective surface
- Building lattices and zeta functions
- Quaternionic equiangular lines
- Non-reduced moduli spaces of sheaves on multiple curves
Articles in the same Issue
- Frontmatter
- On the order sequence of an embedding of the Ree curve
- πβ₯-parallel normal Jacobi operators for Hopf hypersurfaces in complex two-plane Grassmannians with generalized TanakaβWebster connection
- A Krasnoselβskii-type theorem for certain orthogonal polytopes starshaped via k-staircase paths
- Higher algebraic structures in Hamiltonian Floer theory
- Additive structures on f-vector sets of polytopes
- The degree of the tangent and secant variety to a projective surface
- Building lattices and zeta functions
- Quaternionic equiangular lines
- Non-reduced moduli spaces of sheaves on multiple curves