Abstract
Let (X, 0) ⊂ (ℂn, 0) be an irreducible weighted homogeneous singularity curve and let f : (X, 0) → (ℂ2, 0) be a finite map germ, one-to-one and weighted homogeneous with the same weights of (X, 0). We show that 𝒜e-codim(X, f) = μI(f), where the 𝒜e-codimension 𝒜e-codim(X, f) is the minimum number of parameters in a versal deformation and μI(f) is the image Milnor number, i.e. the number of vanishing cycles in the image of a stabilization of f.
Communicated by: R. Cavalieri
Funding: The first author has been supported by CAPES. The second author has been partially supported by DGICYT Grant MTM2015–64013–P. The third author is partially supported by CNPq Grant 309086/2017-5 and FAPESP Grant 2016/04740-7.
References
[1] D. A. H. Ament, J. J. Nuño Ballesteros, Mond’s conjecture for maps between curves. Math. Nachr. 290 (2017), 2845–2857.10.1002/mana.201600483Search in Google Scholar
[2] R.-O. Buchweitz, G.-M. Greuel, The Milnor number and deformations of complex curve singularities. Invent. Math. 58 (1980), 241–281. MR571575 Zbl 0458.3201410.1007/BF01390254Search in Google Scholar
[3] R. Fröberg, C. Gottlieb, R. Häggkvist, On numerical semigroups. Semigroup Forum35 (1987), 63–83. MR880351 Zbl 0614.1004610.1007/BF02573091Search in Google Scholar
[4] G.-M. Greuel, H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49 (1978), 67–86. MR511096 Zbl 0394.3200610.1007/BF01399511Search in Google Scholar
[5] A. Hefez, M. E. Hernandes, Computational methods in the local theory of curves. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro 2001. MR1849596 Zbl 0994.14018Search in Google Scholar
[6] M. E. Hernandes, M. E. Rodrigues Hernandes, M. A. S. Ruas, 𝒜e-codimension of germs of analytic curves. Manuscripta Math. 124 (2007), 237–246. MR2341787 Zbl 1131.3201410.1007/s00229-007-0116-0Search in Google Scholar
[7] T. W. Hungerford, Algebra. Springer 1980. MR600654 Zbl 0442.0000210.1007/978-1-4612-6101-8Search in Google Scholar
[8] D. Mond, Looking at bent wires—𝒜e-codimension and the vanishing topology of parametrized curve singularities. Math. Proc. Cambridge Philos. Soc. 117 (1995), 213–222. MR1307076 Zbl 0869.5702710.1017/S0305004100073060Search in Google Scholar
[9] D. Mond, J. Montaldi, Deformations of maps on complete intersections, Damon’s 𝒦V-equivalence and bifurcations. In: Singularities (Lille, 1991), volume 201 of London Math. Soc. Lecture Note Ser., 263–284, Cambridge Univ. Press 1994. MR1295079 Zbl 0847.5800710.1017/CBO9780511752520.013Search in Google Scholar
[10] D. Mond, R. Pellikaan, Fitting ideals and multiple points of analytic mappings. In: Algebraic geometry and complex analysis (Pátzcuaro, 1987), volume 1414 of Lecture Notes in Math., 107–161, Springer 1989. MR1042359 Zbl 0715.3200710.1007/BFb0090254Search in Google Scholar
[11] J. J. Nuño Ballesteros, B. Oréfice-Okamoto, J. N. Tomazella, Non-negative deformations of weighted homogeneous singularities. Glasg. Math. J. 60 (2018), 175–185.10.1017/S0017089516000641Search in Google Scholar
[12] J. J. Nuño Ballesteros, J. N. Tomazella, Equisingularity of families of map germs between curves. Math. Z. 272 (2012), 349–360. MR2968228 Zbl 1255.3201210.1007/s00209-011-0936-1Search in Google Scholar
[13] J. M. Wahl, Derivations, automorphisms and deformations of quasihomogeneous singularities. In: Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., 613–624, Amer. Math. Soc. 1983. MR713285 Zbl 0534.1400110.1090/pspum/040.2/713285Search in Google Scholar
[14] C. T. C. Wall, Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981), 481–539. MR634595 Zbl 0451.5800910.1112/blms/13.6.481Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Multiprojective witness sets and a trace test
- Image Milnor number and đť’śe-codimension for maps between weighted homogeneous irreducible curves
- Generalizations of 3-Sasakian manifolds and skew torsion
- Uniform modular lattices and affine buildings
- Homogeneous Finsler spaces with exponential metric
- Continuous CM-regularity of semihomogeneous vector bundles
- Solutions to the affine quasi-Einstein equation for homogeneous surfaces
- The geometry of H4 polytopes
Articles in the same Issue
- Frontmatter
- Multiprojective witness sets and a trace test
- Image Milnor number and đť’śe-codimension for maps between weighted homogeneous irreducible curves
- Generalizations of 3-Sasakian manifolds and skew torsion
- Uniform modular lattices and affine buildings
- Homogeneous Finsler spaces with exponential metric
- Continuous CM-regularity of semihomogeneous vector bundles
- Solutions to the affine quasi-Einstein equation for homogeneous surfaces
- The geometry of H4 polytopes