Home Mathematics The Bonnet problem for harmonic maps to the three-sphere
Article
Licensed
Unlicensed Requires Authentication

The Bonnet problem for harmonic maps to the three-sphere

  • Bart Dioos EMAIL logo and Joeri Van der Veken
Published/Copyright: June 30, 2019
Become an author with De Gruyter Brill

Abstract

In previous work [15] the authors defined transforms for non-conformal harmonic maps from a Riemann surface into the 3-sphere. An observation from that study was that two invariants, a real and a complex function, determine a non-conformal harmonic map up to isometries of the 3-sphere. We now show that if the first invariant of a harmonic map and its transformed map are the same, then these maps are either congruent or the harmonic map belongs to a particular 1-parameter family. Inspired by this result we discuss the Bonnet problem for non-conformal harmonic maps: to what extent is a harmonic map determined by its first invariant?

Acknowledgements

The authors would like to thank Makoto Sakaki for his helpful comments and remarks.

  1. Communicated by: P. Eberlein

  2. Funding: This work is partially supported by the Belgian Interuniversity Attraction Pole P07/18 and project 3E160361 of the KU Leuven Research Fund. J. Van der Veken is supported by the Excellence Of Science project G0H4518N of the Belgian government.

References

[1] M. Antić, L. Vrancken, Sequences of minimal surfaces in S2n+1. Israel J. Math. 179 (2010), 493–508. MR2735053 Zbl 1213.5307410.1007/s11856-010-0091-0Search in Google Scholar

[2] J. Berndt, S. Console, C. Olmos, Submanifolds and holonomy. Chapman & Hall/CRC, Boca Raton, FL 2003. MR1990032 Zbl 1043.5304410.1201/9780203499153Search in Google Scholar

[3] A. I. Bobenko, U. Eitner, Painlevé equations in the differential geometry of surfaces. Springer 2000. MR1806600 Zbl 0970.5300210.1007/b76883Search in Google Scholar

[4] J. Bolton, F. Dillen, B. Dioos, L. Vrancken, Almost complex surfaces in the nearly Kähler S3 × S3. Tohoku Math. J. (2)67 (2015), 1–17. MR3337960 Zbl 1327.5306710.2748/tmj/1429549576Search in Google Scholar

[5] J. Bolton, F. Pedit, L. Woodward, Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459 (1995), 119–150. MR1319519 Zbl 0810.5304810.1515/crll.1995.459.119Search in Google Scholar

[6] J. Bolton, L. Vrancken, Transforms for minimal surfaces in the 5-sphere. Differential Geom. Appl. 27 (2009), 34–46. MR2488987 Zbl 1167.5304910.1016/j.difgeo.2008.06.005Search in Google Scholar

[7] O. Bonnet, Sur une propriété de maximum relative à la sphère. Nouvelles Annales de mathématiques12 (1853), 433–438.Search in Google Scholar

[8] O. Bonnet, Mémoire sur la théorie des surfaces applicables sur un surface donnée. J. Ec. Polyt. (1867), 72–92.Search in Google Scholar

[9] F. E. Burstall, D. Ferus, K. Leschke, F. Pedit, U. Pinkall, Conformal geometry of surfaces inS4and quaternions. Springer 2002. MR1887131 Zbl 1033.5300110.1007/b82935Search in Google Scholar

[10] E. Cartan, Sur les couples de surfaces applicables avec conservation des courbures principales. Bull. Sci. Math. (2)66 (1942), 55–72, 74–85. MR0009876 JFM 68.0420.02Search in Google Scholar

[11] W. Chen, H. Li, Bonnet surfaces and isothermic surfaces. Results Math. 31 (1997), 40–52. MR1436402 Zbl 0873.5303510.1007/BF03322150Search in Google Scholar

[12] X. X. Chen, C.-K. Peng, Deformation of surfaces preserving principal curvatures. In: Differential geometry and topology (Tianjin, 198687), volume 1369 of Lecture Notes in Math., 63–70, Springer 1989. MR1001180 Zbl 0682.5300610.1007/BFb0087527Search in Google Scholar

[13] S. S. Chern, Deformation of surfaces preserving principal curvatures. In: Differential geometry and complex analysis, 155–163, Springer 1985. MR780041 Zbl 0566.5300210.1007/978-3-642-69828-6_10Search in Google Scholar

[14] B. Dioos, H. Li, H. Ma, L. Vrancken, Flat almost complex surfaces in S3 × S3. Results Math. 73 (2018) Art. 38, 24 pp. MR3764538 Zbl 1393.5304910.1007/s00025-018-0784-ySearch in Google Scholar

[15] B. Dioos, J. Van der Veken, L. Vrancken, Sequences of harmonic maps in the 3-sphere. Math. Nachr. 288 (2015), 2001–2015. MR3434295 Zbl 1338.5801010.1002/mana.201400271Search in Google Scholar

[16] J. A. Gálvez, A. Martínez, P. Mira, The Bonnet problem for surfaces in homogeneous 3-manifolds. Comm. Anal. Geom. 16 (2008), 907–935. MR2471362 Zbl 1170.5303410.4310/CAG.2008.v16.n5.a1Search in Google Scholar

[17] H. He, H. Ma, E. Wang, Lagrangian Bonnet pairs in complex space forms. Preprint 2015, arXiv:1503.08566 [math.DG]Search in Google Scholar

[18] F. Hélein, Harmonic maps, conservation laws and moving frames, volume 150 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 2002. MR1913803 Zbl 1010.5801010.1017/CBO9780511543036Search in Google Scholar

[19] F. Hélein, J. C. Wood, Harmonic maps. In: Handbook of global analysis, 417–491, 1213, Elsevier Sci. B. V., Amsterdam 2008. MR2389639 Zbl 1236.5800210.1016/B978-044452833-9.50009-7Search in Google Scholar

[20] H. B. Lawson, Jr., Complete minimal surfaces in S3. Ann. of Math. (2)92 (1970), 335–374. MR0270280 Zbl 0205.5200110.2307/1970625Search in Google Scholar

[21] P. Tondeur, Geometry of foliations. Birkhäuser 1997. MR1456994 Zbl 0905.5300210.1007/978-3-0348-8914-8Search in Google Scholar

[22] R. d. A. Tribuzy, A characterization of tori with constant mean curvature in space form. Bol. Soc. Brasil. Mat. 11 (1980), 259–274. MR671469 Zbl 0573.5303710.1007/BF02584641Search in Google Scholar

[23] H. C. Wente, Explicit solutions to the H-surface equation on tori. Michigan Math. J. 49 (2001), 501–517. MR1872754 Zbl 1143.3532510.1307/mmj/1012409968Search in Google Scholar

Received: 2017-07-13
Published Online: 2019-06-30

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2019-0001/pdf
Scroll to top button