Abstract
We show that every i-tight set in the Hermitian variety H(2r + 1, q) is a union of pairwise disjoint (2r + 1)-dimensional Baer subgeometries
Communicated by: G. Korchmáros
Funding statement: Anamari Nakić is supported in part by an STSM grant from the COST project Random network coding and designs over GF(q) (COST IC-1104) and in part by the Croatian Science Foundation under the project 1637
Acknowledgements
The authors thank the referee for the many suggestions which improved the article. We especially wish to thank the referee for the proof of Lemma 2.16 and for giving us the example of two disjoint Baer subgeometries PG(3, 3) in PG(3, 9) which correspond to each other under a symplectic polarity W(3, 9) (Theorem 2.26), thus providing us with an example of a
References
[1] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A114 (2007), 1293–1314. MR2353124 Zbl 1124.5100310.1016/j.jcta.2007.01.009Search in Google Scholar
[2] L. Beukemann, K. Metsch, Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68 (2013), 11–24. MR3046332 Zbl 1277.5100910.1007/s10623-012-9676-4Search in Google Scholar
[3] A. Blokhuis, On the size of a blocking set in PG(2, p). Combinatorica14 (1994), 111–114. MR1273203 Zbl 0803.0501110.1007/BF01305953Search in Google Scholar
[4] A. Blokhuis, Blocking sets in Desarguesian planes. In: Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., 133–155, János Bolyai Math. Soc., Budapest 1996. MR1395857 Zbl 0849.51005Search in Google Scholar
[5] A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi, On multiple blocking sets in Galois planes. Adv. Geom. 7 (2007), 39–53. MR2290638 Zbl 1123.5101210.1515/ADVGEOM.2007.003Search in Google Scholar
[6] A. Blokhuis, L. Storme, T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) 60 (1999), 321–332. MR1724814 Zbl 0940.5100710.1112/S0024610799007875Search in Google Scholar
[7] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory Ser. A1 (1966), 96–104. MR0197215 Zbl 0152.1810610.1016/S0021-9800(66)80007-8Search in Google Scholar
[8] A. Bruen, Baer subplanes and blocking sets. Bull.Amer. Math. Soc. 76 (1970), 342–344. MR0251629 Zbl 0207.0260110.1090/S0002-9904-1970-12470-3Search in Google Scholar
[9] A. A. Bruen, Intersection of Baer subgeometries. Arch. Math. (Basel)39 (1982), 285–288. MR682458 Zbl 0477.5100810.1007/BF01899537Search in Google Scholar
[10] A. A. Bruen, J. W. P. Hirschfeld, Intersections in projective space. I. Combinatorics. Math. Z. 193 (1986), 215–225. MR856149 Zbl 0579.5101010.1007/BF01174331Search in Google Scholar
[11] A. Cossidente, F. Pavese, On the geometry of unitary involutions. Finite Fields Appl. 36 (2015), 14–28. MR3396373 Zbl 1328.5100110.1016/j.ffa.2015.06.004Search in Google Scholar
[12] J. De Beule, A. Gács, Complete arcs on the parabolic quadric Q(4, q). Finite Fields Appl. 14 (2008), 14–21. MR2381472 Zbl 1137.5100810.1016/j.ffa.2007.09.002Search in Google Scholar
[13] J. De Beule, P. Govaerts, A. Hallez, L. Storme, Tight sets, weighted m-covers, weighted m-ovoids, and minihypers. Des. Codes Cryptogr. 50 (2009), 187–201. MR2469977 Zbl 1246.5100610.1007/s10623-008-9223-5Search in Google Scholar
[14] J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads of classical finite polar spaces. Serdica Math. J. 34 (2008), 689–714. MR2489960 Zbl 1224.05071Search in Google Scholar
[15] S. De Winter, K. Thas, Bounds on partial ovoids and spreads in classical generalized quadrangles. Innov. Incidence Geom. 11 (2010), 19–33. MR2795055 Zbl 1266.5100510.2140/iig.2010.11.19Search in Google Scholar
[16] G. Donati, N. Durante, On the intersection of two subgeometries of PG(n, q). Des. Codes Cryptogr. 46 (2008), 261–267. MR2372839 Zbl 1185.5101010.1007/s10623-007-9143-9Search in Google Scholar
[17] K. W. Drudge, Extremal sets in projective and polar spaces. PhD thesis, Univ. Western Ontario (1998). MR2698237Search in Google Scholar
[18] V. Fack, S. L. Fancsali, L. Storme, G. Van de Voorde, J. Winne, Small weight codewords in the codes arising from Desarguesian projective planes. Des. Codes Cryptogr. 46 (2008), 25–43. MR2361839 Zbl 1182.9406210.1007/s10623-007-9126-xSearch in Google Scholar
[19] P. Govaerts, L. Storme, On a particular class of minihypers and its applications. II. Improvements for q square. J. Combin. Theory Ser. A97 (2002), 369–393. MR1883871 Zbl 1009.5100410.1006/jcta.2001.3219Search in Google Scholar
[20] P. Govaerts, L. Storme, H. Van Maldeghem, On a particular class of minihypers and its applications. III. Applications. European J. Combin. 23 (2002), 659–672. MR1924787 Zbl 1022.5100510.1006/eujc.2002.0599Search in Google Scholar
[21] A. Hallez, Linear codes and blocking structures in finite projective and polar spaces. PhD thesis, Ghent University (2010).Search in Google Scholar
[22] N. Hamada, Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes. Bull. Osaka Women’s Univ. 24 (1987), 1–24.Search in Google Scholar
[23] N. Hamada, T. Helleseth, A characterization of some q-ary codes (q > (h − 1)2, h ≥3) meeting the Griesmer bound. Math. Japon. 38 (1993), 925–939. MR1240296 Zbl 0786.05016Search in Google Scholar
[24] M. Lavrauw, L. Storme, G. Van de Voorde, On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual. Finite Fields Appl. 14 (2008), 1020–1038. MR2457544 Zbl 1153.5100610.1016/j.ffa.2008.06.002Search in Google Scholar
[25] G. Lunardon, Linear k-blocking sets. Combinatorica21 (2001), 571–581. MR1863578 Zbl 0996.5100310.1007/s004930100013Search in Google Scholar
[26] K. Metsch, L. Storme, Partial t-spreads in PG(2t + 1, q). Des. Codes Cryptogr. 18 (1999), 199–216. MR1738667 Zbl 0964.5100510.1023/A:1008305824113Search in Google Scholar
[27] P. Polito, O. Polverino, On small blocking sets. Combinatorica18 (1998), 133–137. MR1645666 Zbl 0910.0501710.1007/PL00009807Search in Google Scholar
[28] O. Polverino, Small minimal blocking sets and complete k-arcs in PG(2, p3). Discrete Math. 208/209 (1999), 469–476. MR1725553 Zbl 0941.5100810.1016/S0012-365X(99)00090-4Search in Google Scholar
[29] L. Rédei, Lückenhafte Polynome über endlichen Körpern. Birkhäuser 1970. MR0294297 Zbl 0321.1202810.1007/978-3-0348-4006-4Search in Google Scholar
[30] M. Sved, Baer subspaces in the n-dimensional projective space. In: Combinatorial mathematics, X (Adelaide, 1982), volume 1036 of Lecture Notes in Math., 375–391, Springer 1983. MR731594 Zbl 0527.5102110.1007/BFb0071531Search in Google Scholar
[31] P. Sziklai, On small blocking sets and their linearity. J. Combin. Theory Ser. A115 (2008), 1167–1182. MR2450336 Zbl 1156.5100710.1016/j.jcta.2008.01.006Search in Google Scholar
[32] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3 (1997), 187–202. MR1459823 Zbl 0912.5100410.1006/ffta.1996.0176Search in Google Scholar
[33] T. Szönyi, Z. Weiner, Small blocking sets in higher dimensions. J. Combin. Theory Ser. A95 (2001), 88–101. MR1840479 Zbl 0983.5100610.1006/jcta.2000.3152Search in Google Scholar
[34] Z. Weiner, Small point sets of PG(n, q) intersecting each k-space in 1 modulo
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- In memoriam Karl Strambach
- Dominance order on signed integer partitions
- Connectedness Bertini Theorem via numerical equivalence
- Invariants of the Brill–Noether curve
- Rigidity of entire graphs in weighted product spaces with nonnegative Bakry–Émery–Ricci tensor
- A note on surfaces with pg = q = 2 and an irrational fibration
- Mean width of random perturbations of random polytopes
- The automorphism groups of doubly transitive bilinear dual hyperovals
- Tight sets in finite classical polar spaces
Articles in the same Issue
- Frontmatter
- In memoriam Karl Strambach
- Dominance order on signed integer partitions
- Connectedness Bertini Theorem via numerical equivalence
- Invariants of the Brill–Noether curve
- Rigidity of entire graphs in weighted product spaces with nonnegative Bakry–Émery–Ricci tensor
- A note on surfaces with pg = q = 2 and an irrational fibration
- Mean width of random perturbations of random polytopes
- The automorphism groups of doubly transitive bilinear dual hyperovals
- Tight sets in finite classical polar spaces