Abstract
In this paper, we propose a framework to construct multiple VNTs in WDM-based optical network and then propose a control scheme, which we call a managed self-organization, to achieve adaptive and efficient VNT controls. Our basic idea is that, we introduce a system manager for managing and controlling the overall performance in multiple VNTs environments. The system manager collects the activities that represent the conditions of VNTs, calculate the overall condition of the network, and loosely controls each VNT through the feedback of the information about the overall condition. Simulation results show that the VNT control with system manager can adapt to the large traffic fluctuation within 47 minutes, while the VNT control without system manager takes more than 200 minutes.
Copyright 2011 De Gruyter
Articles in the same Issue
- Minimization of Point Light Source Coordinates Determination Error on Photo Detectors
- Comparison of Silicon and Chalcogenide-based Chip-scale All-optical 2R Regenerators
- A High Q Design for N-channel Wavelength Division Demultiplexer
- All-optical KarhunenLoeve Transform Using Multimode Interference Structures on Silicon Nanowires
- Structural Study of Hole Assisted Fibers Considering Optical Parallel Transmission
- An Interesting Optical Behavior of Bent/Multi-branch Waveguides Based on Hexagonal-lattice Photonic Crystals
- Performance Analysis of Particle Swarm Optimization Based Routing Algorithm in Optical Burst Switching Networks
- A Managed Self-Organization of Virtual Network Topology Controls in WDM-based Optical Networks
- Performance Evaluation of Free Space Optics Communication System in the Presence of Forward Error Correction Techniques
- A Novel Reliable WDM-PON System
- Optical Generation and Distribution of OFDM Ultrawideband Signals Over Fiber
- Influence of Pre- and Post-compensation of Chromatic Dispersion on Equalization Enhanced Phase Noise in Coherent Multilevel Systems
- A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems
- Optical Labelling Scheme Based on Dedicated Wavelength and Hybrid Modulation Techniques
- News
Articles in the same Issue
- Minimization of Point Light Source Coordinates Determination Error on Photo Detectors
- Comparison of Silicon and Chalcogenide-based Chip-scale All-optical 2R Regenerators
- A High Q Design for N-channel Wavelength Division Demultiplexer
- All-optical KarhunenLoeve Transform Using Multimode Interference Structures on Silicon Nanowires
- Structural Study of Hole Assisted Fibers Considering Optical Parallel Transmission
- An Interesting Optical Behavior of Bent/Multi-branch Waveguides Based on Hexagonal-lattice Photonic Crystals
- Performance Analysis of Particle Swarm Optimization Based Routing Algorithm in Optical Burst Switching Networks
- A Managed Self-Organization of Virtual Network Topology Controls in WDM-based Optical Networks
- Performance Evaluation of Free Space Optics Communication System in the Presence of Forward Error Correction Techniques
- A Novel Reliable WDM-PON System
- Optical Generation and Distribution of OFDM Ultrawideband Signals Over Fiber
- Influence of Pre- and Post-compensation of Chromatic Dispersion on Equalization Enhanced Phase Noise in Coherent Multilevel Systems
- A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems
- Optical Labelling Scheme Based on Dedicated Wavelength and Hybrid Modulation Techniques
- News