The Effect of Solute Leakage on the Thermodynamical Performance of an Osmotic Membrane
-
A. Seppälä
and M. El Haj Assad
Abstract
We derive an equation for the Second Law efficiency of an osmotic membrane. This expression of efficiency depends on the ratio between the solvent and solute flux, but remains independent of the actual values of the fluxes and of any transport model. The equation can be used to find the magnitude of solute leakage that can be accepted for optimally performing osmotic membranes. Special emphasis is given to osmotic power generation systems. We additionally compare the fraction of total power destruction that occurs inside the selective layer of the membrane, and the fraction that occurs inside the support material of the membrane.
Copyright © 2003 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Obituary
- Quantitative Estimation of Relationship between the State with Minimal Entropy Production and the Actual Stationary Regime of Flame Propagation
- Extended Irreversible Thermodynamics and Generalization of the Dual-Phase-Lag Model in Heat Transfer
- Quantum Degeneracy Effect on the Performance of a Bose Ericsson Refrigeration Cycle
- Optimal Process Paths for Endoreversible Systems
- The Effect of Solute Leakage on the Thermodynamical Performance of an Osmotic Membrane
- Fractional Diffusion, Irreversibility and Entropy
- Y. Demirel: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems.
Articles in the same Issue
- Obituary
- Quantitative Estimation of Relationship between the State with Minimal Entropy Production and the Actual Stationary Regime of Flame Propagation
- Extended Irreversible Thermodynamics and Generalization of the Dual-Phase-Lag Model in Heat Transfer
- Quantum Degeneracy Effect on the Performance of a Bose Ericsson Refrigeration Cycle
- Optimal Process Paths for Endoreversible Systems
- The Effect of Solute Leakage on the Thermodynamical Performance of an Osmotic Membrane
- Fractional Diffusion, Irreversibility and Entropy
- Y. Demirel: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems.