Abstract
We study two transitivity properties for group actions on buildings, called Weyl transitivity and strong transitivity. Following hints by Tits, we give examples involving anisotropic algebraic groups to show that strong transitivity is strictly stronger than Weyl transitivity. A surprising feature of the examples is that strong transitivity holds more often than expected.
Received: 2006-04-27
Published Online: 2007-06-18
Published in Print: 2007-05-23
© Walter de Gruyter
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Transitivity properties for group actions on buildings
- Fields, values and character extensions in finite groups
- Primitive sharp permutation groups with large solvable subgroups
- On the size of the nilpotent residual in finite groups
- On the commuting complex of finite metanilpotent groups
- Soluble normally constrained pro-p-groups
- Comparing quasi-finitely axiomatizable and prime groups
- A finitely presented torsion-free simple group
- Andrews–Curtis groups and the Andrews–Curtis conjecture
- Residual finiteness of outer automorphism groups of certain tree products
- Commutator subgroups of Hantzsche–Wendt groups
Articles in the same Issue
- Transitivity properties for group actions on buildings
- Fields, values and character extensions in finite groups
- Primitive sharp permutation groups with large solvable subgroups
- On the size of the nilpotent residual in finite groups
- On the commuting complex of finite metanilpotent groups
- Soluble normally constrained pro-p-groups
- Comparing quasi-finitely axiomatizable and prime groups
- A finitely presented torsion-free simple group
- Andrews–Curtis groups and the Andrews–Curtis conjecture
- Residual finiteness of outer automorphism groups of certain tree products
- Commutator subgroups of Hantzsche–Wendt groups