Optimality Conditions and Duality for Multiobjective Control Problems
-
T. R. Gulati
, I. Husain and A. Ahmed
Abstract
Fritz John and Kuhn-Tucker type necessary optimality conditions for a Pareto optimal (efficient) solution of a multiobjective control problem are obtained by first reducing the multiobjective control problem to a system of single objective control problems, and then using already established optimality conditions. As an application of Kuhn-Tucker type optimality conditions, Wolfe and Mond-Weir type dual multiobjective control problems are formulated and usual duality results are established under invexity/generalized invexity, relating properly efficient solutions of the primal and dual problems. Wolfe and Mond-Weir type dual multiobjective control problems with free boundary conditions are also presented.
© Heldermann Verlag
Articles in the same Issue
- On Additive Almost Continuous Functions Under
- Maximal Solutions and Existence Theory for Fuzzy Differential and Integral Equations
- Projections in Weakly Compactly Generated Banach Spaces and Chang's Conjecture
- Dominated Convergence and Stone-Weierstrass Theorem
- Optimality Conditions and Duality for Multiobjective Control Problems
- On the Convergence of Sequences of Functions which are Discontinuous on Countable Sets
- Euler-Poincaré Formalism of Coupled KdV Type Systems and Diffeomorphism Group on S1
- Stability Analysis and Comparison of the Models for Carcinogenesis Mutations in the Case of Two Stages of Mutations
Articles in the same Issue
- On Additive Almost Continuous Functions Under
- Maximal Solutions and Existence Theory for Fuzzy Differential and Integral Equations
- Projections in Weakly Compactly Generated Banach Spaces and Chang's Conjecture
- Dominated Convergence and Stone-Weierstrass Theorem
- Optimality Conditions and Duality for Multiobjective Control Problems
- On the Convergence of Sequences of Functions which are Discontinuous on Countable Sets
- Euler-Poincaré Formalism of Coupled KdV Type Systems and Diffeomorphism Group on S1
- Stability Analysis and Comparison of the Models for Carcinogenesis Mutations in the Case of Two Stages of Mutations