Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
A Note on the q-Binomial Rational Root Theorem
-
Ying-Jie Lin
Veröffentlicht/Copyright:
15. Juni 2009
Abstract
We show that a theorem obtained by K. R. Slavin can be easily deduced from the q-Lucas theorem.
Received: 2008-11-19
Revised: 2009-02-23
Accepted: 2009-03-03
Published Online: 2009-06-15
Published in Print: 2009-June
© de Gruyter 2009
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Symmetric Numerical Semigroups Generated by Fibonacci and Lucas Triples
- On Newman's Conjecture and Prime Trees
- The Dying Rabbit Problem Revisited
- A Note on the q-Binomial Rational Root Theorem
- The 3x + 1 Conjugacy Map over a Sturmian Word
- The Number of Relatively Prime Subsets of {1, 2, . . . , n}
- Generalized Levinson–Durbin Sequences and Binomial Coefficients
- Neither (4k2 + 1) nor (2k(k – 1) + 1) is a Perfect Square
- Some Arithmetic Properties of Overpartition k-Tuples
- Characterizations of Midy's Property
Schlagwörter für diesen Artikel
q-binomial coefficient;
greatest common divisor;
root of unity
Artikel in diesem Heft
- Symmetric Numerical Semigroups Generated by Fibonacci and Lucas Triples
- On Newman's Conjecture and Prime Trees
- The Dying Rabbit Problem Revisited
- A Note on the q-Binomial Rational Root Theorem
- The 3x + 1 Conjugacy Map over a Sturmian Word
- The Number of Relatively Prime Subsets of {1, 2, . . . , n}
- Generalized Levinson–Durbin Sequences and Binomial Coefficients
- Neither (4k2 + 1) nor (2k(k – 1) + 1) is a Perfect Square
- Some Arithmetic Properties of Overpartition k-Tuples
- Characterizations of Midy's Property