Article
Licensed
Unlicensed
Requires Authentication
Computing the maximal algebra of quotients of a Lie algebra
-
Matej Brešar
, Francesc Perera , Juana Sánchez Ortega and Mercedes Siles Molina
Published/Copyright:
June 15, 2009
Abstract
The maximal algebra of quotients of a semiprime Lie algebra was introduced recently by M. Siles Molina. In the present paper we answer some natural questions concerning this concept, and describe maximal algebras of quotients of certain Lie algebras that arise from associative algebras.
Received: 2007-05-24
Accepted: 2007-12-14
Published Online: 2009-06-15
Published in Print: 2009-July
© de Gruyter 2009
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- The Noether Map I
- A general notion of algebraic entropy and the rank-entropy
- Computing the maximal algebra of quotients of a Lie algebra
- Mahler measure under variations of the base group
- Extremal α-pseudocompact abelian groups
- Group algebras whose symmetric and skew elements are Lie solvable
- Walks on graphs and lattices – effective bounds and applications
- Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions
- On the homotopy type of the non-completed classifying space of a p-local finite group
Articles in the same Issue
- The Noether Map I
- A general notion of algebraic entropy and the rank-entropy
- Computing the maximal algebra of quotients of a Lie algebra
- Mahler measure under variations of the base group
- Extremal α-pseudocompact abelian groups
- Group algebras whose symmetric and skew elements are Lie solvable
- Walks on graphs and lattices – effective bounds and applications
- Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions
- On the homotopy type of the non-completed classifying space of a p-local finite group