Home Intrinsic ultracontractivity for non-symmetric Lévy processes
Article
Licensed
Unlicensed Requires Authentication

Intrinsic ultracontractivity for non-symmetric Lévy processes

  • Panki Kim and Renming Song
Published/Copyright: January 30, 2009
Forum Mathematicum
From the journal Volume 21 Issue 1

Abstract

Recently in [Kim and Song, Intrinsic ultracontractivity of non-symmetric diffusion semigroups in bounded domains: 2006, Kim and Song, Intrinsic ultracontractivity of non-symmetric diffusion with measure-valued drifts and potentials: 2006], we extended the concept of intrinsic ultracontractivity to non-symmetric semigroups and proved that for a large class of non-symmetric diffusions Z with measure-valued drift and potential, the semigroup of ZD (the process obtained by killing Z upon exiting D) in a bounded domain is intrinsic ultracontractive under very mild assumptions.

In this paper, we study the intrinsic ultracontractivity for non-symmetric discontinuous Lévy processes. We prove that, for a large class of non-symmetric discontinuous Lévy processes X such that the Lebesgue measure is absolutely continuous with respect to the Lévy measure of X, the semigroup of XD in any bounded open set D is intrinsic ultracontractive. In particular, for the non-symmetric stable process X discussed in [Vondraček, Glas. Mat. Ser. 37: 211–233, 2002], the semigroup of XD is intrinsic ultracontractive for any bounded set D. Using the intrinsic ultracontractivity, we show that the parabolic boundary Harnack principle is true for those processes. Moreover, we get that the supremum of the expected conditional lifetimes in a bounded open set is finite. We also have results of the same nature when the Lévy measure is compactly supported.

Received: 2006-06-21
Revised: 2007-05-16
Published Online: 2009-01-30
Published in Print: 2009-January

© de Gruyter 2009

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/FORUM.2009.003/html?lang=en
Scroll to top button