Startseite Loss Reduction in Point Estimation Problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Loss Reduction in Point Estimation Problems

  • Hans-Dieter Heike und Matei Demetrescu
Veröffentlicht/Copyright: 10. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Stochastics and Quality Control
Aus der Zeitschrift Band 21 Heft 2

Abstract

When evaluating point estimators by means of general loss functions, the expected loss is not always minimal, similar to the case of mean-biased estimators, whose mean squared error can be reduced by accounting for the mean-bias. Depending on the loss function, the socalled Lehmann-bias can be significantly more important than the mean-bias of an estimator. Although a simple decomposition does not hold for expected losses as it does for the mean squared error, the expected loss can still be reduced by correcting for the Lehmann-bias. An asymptotic and a bootstrap-based correction are suggested and compared in small samples for the exponential distribution by means of Monte Carlo simulation.

Published Online: 2010-03-10
Published in Print: 2006-October

© Heldermann Verlag

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/EQC.2006.209/html
Button zum nach oben scrollen