Abstract
We consider complete (possibly non-compact) three dimensional Riemannian manifolds (M, g) such that: (a) (M, g) is non-collapsed (i.e. the volume of an arbitrary ball of radius one is bounded from below by v > 0), (b) the Ricci curvature of (M, g) is bounded from below by k, (c) the geometry at infinity of (M, g) is not too extreme (or (M, g) is compact). Given such initial data (M, g) we show that a Ricci flow exists for a short time interval 0, T), where TT(v, k) > 0. This enables us to construct a Ricci flow of any (possibly singular) metric space (X, d) which arises as a GromovHausdorff (GH) limit of a sequence of 3-manifolds which satisfy (a), (b) and (c) uniformly. As a corollary we show that such an X must be a manifold. This shows that the conjecture of M. AndersonJ. CheegerT. ColdingG. Tian is correct in dimension three.
Walter de Gruyter Berlin New York 2012
Articles in the same Issue
- BerezinToeplitz quantization on Khler manifolds
- BerezinToeplitz quantization on Khler manifolds
- Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below
- Morita equivalence and characteristic classes of star products
- Unitary invariants for Hilbert modules of finite rank
- Critre pour l'intgralit des coefficients de Taylor des applications miroir
Articles in the same Issue
- BerezinToeplitz quantization on Khler manifolds
- BerezinToeplitz quantization on Khler manifolds
- Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below
- Morita equivalence and characteristic classes of star products
- Unitary invariants for Hilbert modules of finite rank
- Critre pour l'intgralit des coefficients de Taylor des applications miroir