Home Mathematics Bivariant algebraic K-theory
Article
Licensed
Unlicensed Requires Authentication

Bivariant algebraic K-theory

  • Guillermo Cortiñas EMAIL logo and Andreas Thom
Published/Copyright: December 7, 2007
Journal für die reine und angewandte Mathematik
From the journal Volume 2007 Issue 610

Abstract

We show how methods from K-theory of operator algebras can be applied in a completely algebraic setting to define a bivariant, M-stable, homotopy-invariant, excisive K-theory of algebras over a fixed unital ground ring H, (A, B) ↦ kk*(A, B), which is universal in the sense that it maps uniquely to any other such theory. It turns out kk is related to C. Weibel's homotopy algebraic K-theory, KH. We prove that, if H is commutative and A is central as an H-bimodule, then

We show further that some calculations from operator algebra KK-theory, such as the exact sequence of Pimsner-Voiculescu, carry over to algebraic kk.

Received: 2006-04-07
Revised: 2006-05-19
Published Online: 2007-12-07
Published in Print: 2007-09-26

© Walter de Gruyter

Downloaded on 9.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2007.068/html
Scroll to top button