Home The Use of Denaturing High-Performance Liquid Chromatography (DHPLC) for the Analysis of Genetic Variations: Impact for Diagnostics and Pharmacogenetics
Article
Licensed
Unlicensed Requires Authentication

The Use of Denaturing High-Performance Liquid Chromatography (DHPLC) for the Analysis of Genetic Variations: Impact for Diagnostics and Pharmacogenetics

  • Felix W. Frueh and Mario Noyer-Weidner
Published/Copyright: June 1, 2005
Become an author with De Gruyter Brill
Clinical Chemistry and Laboratory Medicine (CCLM)
From the journal Volume 41 Issue 4

Abstract

Over the past five years, denaturing high-performance liquid chromatography (DHPLC) has emerged as one of the most versatile technologies for the analysis of genetic variations. With the benefit of novel polymer chemistries used for separation, the accuracy, sensitivity, and the throughput of DHPLC for DNA and RNA analysis have greatly improved. DHPLC has been adopted in many laboratories for the screening of mutations and single-nucleotide polymorphisms (SNPs). The ability of DHPLC to detect known and unknown mutations simultaneously has put this technology at the forefront of genetic analysis for a wide variety of diseases. In addition, the high sensitivity of DHPLC combined with the accuracy of the heteroduplex analysis has allowed the development of applications beyond the scope of traditional sequencing or genotyping, e.g., the early detection of cancer. This article reviews the methods, which made DHPLC a widely used tool for diagnosis in molecular genetics and pharmacogenetics. The article provides an overview of current applications in these fields and points to novel applications in areas like epigenetics and the analysis of heteroplasmic mitochondrial DNA, in which DHPLC is becoming the leading technology.

:
Published Online: 2005-06-01
Published in Print: 2003-04-25

Copyright © 2003 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. First Santorini Conference: From Genetic Variations to Risk Prediction and Pharmacogenomics
  2. Pharmacogenetics and Pharmacogenomics in Drug Discovery and Development: An Overview
  3. Regulatory Gene Mutations Affecting Apolipoprotein Gene Expression: Functions and Regulatory Behavior of Known Genes May Guide Future Pharmacogenomic Approaches to Therapy
  4. The Proteome: Anno Domini 2002
  5. Cardiac Sodium Channel Diseases
  6. Haemophilia B: From Molecular Diagnosis to Gene Therapy
  7. The Use of Denaturing High-Performance Liquid Chromatography (DHPLC) for the Analysis of Genetic Variations: Impact for Diagnostics and Pharmacogenetics
  8. Molecular Diagnostics by Microelectronic Microchips
  9. Molecular Beacons as Diagnostic Tools: Technology and Applications
  10. Electrochemical DNA Sensor for Detection of Single Nucleotide Polymorphisms
  11. Comparison of Standard PCR and the LightCycler® Technique to Determine the Thrombophilic Mutations: An Efficiency and Cost Study
  12. Impact of Purified Water Quality on Molecular Biology Experiments
  13. Which Are the best Tools for Specific Clinical Application (Chips, Multiplex, Mass Spec Profile, etc.)?
  14. Genetic Variations Observed in Arterial and Venous Thromboembolism – Relevance for Therapy, Risk Prevention and Prognosis
  15. The TNF- α Gene NcoI Polymorphism at Position –308 of the Promoter Influences Insulin Resistance, and Increases Serum Triglycerides after Postprandial Lipaemia in Familiar Obesity
  16. The –308 G/A Tumor Necrosis Factor-α Gene Dimorphism: A Risk Factor for Unstable Angina
  17. The Apolipoprotein AV Gene and Diurnal Triglyceridaemia in Normolipidaemic Subjects
  18. Left Ventricular Size, Mass and Function in Relation to Angiotensin-Converting Enzyme Gene and Angiotensin-II Type 1 Receptor Gene Polymorphisms in Patients with Coronary Artery Disease
  19. Analysis of Multiple Single Nucleotide Polymorphisms of Candidate Genes Related to Coronary Heart Disease Susceptibility by Using Support Vector Machines
  20. PON1-192 Phenotype and Genotype Assessments in 918 Subjects of the Stanislas Cohort Study
  21. Lipoprotein Lipase Gene Polymorphisms in Croatian Patients with Coronary Artery Disease
  22. Homocysteine, Methylenetetrahydrofolate Reductase C677T Polymorphism and the B-Vitamins: A Facet of Nature-Nurture Interplay
  23. Which, and How Limited Number of Polymorphisms Should Be Selected per Disease, Risk Assessment, Health Profile or Biological System?
  24. Ethical Issues: Should We Give the Predictive Genetic Profile to the Citizens?
  25. Pharmacogenetics and Responders to a Therapy: Theoretical Background and Practical Problems
  26. Pharmacogenetics of Drug Metabolising Enzymes: Importance for Personalised Medicine
  27. Pharmacogenomics and Pharmacogenetics of Cholesterol-Lowering Therapy
  28. Pharmacogenomics of Drugs Affecting the Cardiovascular System
  29. Allele Frequencies for Glutathione S-Transferase and N-Acetyltransferase 2 Differ in African Population Groups and May Be Associated With Oesophageal Cancer or Tuberculosis Incidence
  30. CYP3A4*1B and NAT2*14 Alleles in a Native African Population
  31. Pharmacogenetics: From Bench to Bedside
  32. Meetings and Awards
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2003.068/html
Scroll to top button