Optimum conditions for cultivation of the Trailliella phase of Bonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production
-
Róisín Nash
Abstract
Red algae of the order Bonnemaisoniales produce secondary metabolites that may be used as preservatives for industrial applications. Whereas species of Asparagopsis are cultured on a large scale for this purpose, no similar applications have been attempted for Bonnemaisonia species, despite evidence suggesting a similar potential for production of valuable natural products. Optimal conditions for growth of the Trailliella phase of Bonnemaisonia hamifera were assessed experimentally under controlled conditions. Several factors (temperature, photon irradiance, daylength, aeration, culture medium, concentration of nutrients) were tested. Optimal conditions for biomass production in Trailliella are represented by a combination of temperatures of 15–20°C, photon irradiances of 20–30 μmol photons m-2 s-1 and long daylenghts (16:8 h L:D). Quarter-strength von Stosch medium proved to be the best of those tested; aeration contributed also to a higher biomass production. Any attempts of large-scale cultivation should be performed therefore under similar conditions. The growth responses indicate that strains maintained in long-term culture collections can be successfully used for large-scale production.
References
Andreakis, N., G. Procaccini and W. Kooistra. 2004. Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations. Eur. J. Phycol.39: 273–283.Search in Google Scholar
Batters, E.A.L. 1896. New or critical British marine algae. J. Bot., London34: 384–390.Search in Google Scholar
Bold, H.C. and M.J. Wynne. 1978. Introduction to the algae. Prentice-Hall Inc., Englewood Cliffs, New Jersey. pp. 573.Search in Google Scholar
Børgesen, F. 1930. Marine algae from the Canary Islands. Biol. Meddr.9: 1–159.Search in Google Scholar
Breeman, A.M. 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol. Meeresunters.42: 199–241.10.1007/BF02366043Search in Google Scholar
Breeman, A.M. 1993. Photoperiodic history affects the critical daylength of the short-day plant Acrosymphyton purpuriferum (Rhodophyta). Eur. J. Phycol.28: 157–160.10.1080/09670269300650241Search in Google Scholar
Breeman, A.M. and M.D. Guiry. 1989. Tidal influences on the photoperiodic induction of tetrasporogenesis in Bonnemaisonia hamifera (Rhodophyta). Mar. Biol.102: 5–14.10.1007/BF00391318Search in Google Scholar
Breeman, A.M., E.J.S. Meulenhoff and M.D. Guiry. 1988. Life history regulation and phenology of the red alga Bonnemaisonia hamifera. Helgol. Meeresunters.42: 535–551.10.1007/BF02365625Search in Google Scholar
Buschmann, A.H., D. Varela, M. Cifuentes, M.D. Hernandez-Gonzalez, L. Henriquez, R. Westermeier and J.A. Correja. 2004. Experimental indoor cultivation of the carragenophyte red alga Gigartina skottsbergii. Aquaculture241: 357–370.10.1016/j.aquaculture.2004.08.026Search in Google Scholar
Chen, L.C.M., T. Edelstein and J. McLachlan. 1969. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol.5: 211–220.10.1111/j.1529-8817.1969.tb02605.xSearch in Google Scholar PubMed
Combaut, G., Y. Bruneau, J. Teste and L. Codomier. 1978. Halogen compounds from a red alga, Falkenbergia rufolanosa, tetrasporophyte of Asparagopsis armata. Phytochemistry17: 1661–1663.Search in Google Scholar
Demain A.L. and A. Fang. 2000. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotech.69: 1–39.10.1007/3-540-44964-7_1Search in Google Scholar PubMed
De Paula, E.J., C. Erbert and R.T. Lima Pereira. 2001. Growth rate of the carrageenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales) in vitro. Phycol. Res.49: 155–161.Search in Google Scholar
Dixon, P.S. and L.M. Irvine. 1977. Seaweeds of the British Isles. Volume 1 Rhodophyta. Part 1 Introduction, Nemaliales, Gigartinales. The Natural History Museum, London. pp. 252.Search in Google Scholar
Feldmann, J. 1954. Inventaire de la flore marine de Roscoff. Trav. Stat. Biol. Roscoff, Suppl.6: 1–152.Search in Google Scholar
Feldmann, J. and G. Feldmann. 1942. Recherches sur les Bonnemaisoniacées et leurs alternance de générations. Ann. Sci. Nat. (Bot., Ser. 11)3: 75–175.Search in Google Scholar
Gal-Or, S. and A. Israel. 2004. Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation. J. Appl. Phycol.16: 195–202.10.1023/B:JAPH.0000048505.13667.bfSearch in Google Scholar
Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano and M. Kiyohara. 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. Appl. Phycol.3: 355–362.10.1007/BF02392889Search in Google Scholar
Guiry, M.D. 1987. The evolution of life history types in the Rhodophyta: an appraisal. Cryptogamie, Algol.8: 1–12.Search in Google Scholar
Guiry, M.D. and E.M. Cunningham. 1984. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia23: 357–367.10.2216/i0031-8884-23-3-357.1Search in Google Scholar
Guiry, M.D. and C.J. Dawes. 1992. Daylength, temperature and nutrient control of tetrasporogenesis in Asparagopsis armata (Rhodophyta). J. Exp. Mar. Biol. Ecol.158: 197–217.Search in Google Scholar
Guiry, M.D., E. Nic Dhonncha and F. Rindi. 2005. AlgaeBase version 3.0. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Searched on 13 May 2005.Search in Google Scholar
Hardy, F.G. and M.D. Guiry. 2003. A check-list and atlas of the seaweeds of Britain and Ireland. British Phycological Society, London. pp. 435Search in Google Scholar
Hariot, P. 1891. Liste des algues marines rapportés de Yokoska (Japon) par M. le Dr Savatier. Mém. Soc. Nation. Sci. Nat. Mat. Cherbourg27: 211–230.Search in Google Scholar
Huang, Y.M. and G.L. Rorrer. 2003. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Biotech. Prog.19: 418–427.10.1021/bp020123iSearch in Google Scholar
Hurd, C.L. 2000. Water motion, marine macroalgal physiology, and production. J. Phycol.36: 453–472.Search in Google Scholar
Jacobsen, N. and J.O. Madsen. 1978. Halogenated metabolites including brominated 2-heptanols and 2-heptyl acetates from tetrasporophytes of the red alga Bonnemaisonia hamifera. Tetrahed. Lett.33: 3065–3068.10.1016/S0040-4039(01)94940-8Search in Google Scholar
Knappe, J. 1985. Studies of development of Bonnemaisoniaceae. Ber. Deutsch. Bot. Gesell.98: 393–400.Search in Google Scholar
Kraan, S. and K.A. Barrington. 2005. Commercial farming of Asparagopsis armata (Bonnemaisoniaceae, Rhodophyta) in Ireland, maintenance of an introduced species? J. Appl. Phycol.17: 103–110.Search in Google Scholar
Lognoné, V. and P. Dion. 2003. Bioactive molecules from cultivated marine macroalgae. In: 3rd European Phycological Congress – programme and book of abstracts. Queen's University, Belfast, p. 21.Search in Google Scholar
Lüning, K. 1979. Photoperiodism in the Trailliella phase of Bonnemaisonia hamifera. Brit. Phycol. J.14: 125.Search in Google Scholar
Lüning, K. 1990. Seaweeds. Their environment, biogeography and ecophysiology. John Wiley and Sons, New York. pp. 527.Search in Google Scholar
Marshall, R.A., D.B. Harper, W.C. McRoberts and M.J. Dring. 1999. Volatile bromocarbons produced by Falkenbergia stages of Asparagopsis spp. (Rhodophyta). Limnol. Oceanog.44: 1348–1352.10.4319/lo.1999.44.5.1348Search in Google Scholar
McConnell O.J. and W. Fenical. 1977. Halogen chemistry of the red alga Asparagopsis.Phytochemistry16: 367–374.10.1016/0031-9422(77)80067-8Search in Google Scholar
McConnell O.J. and W. Fenical. 1980. Halogen chemistry of the red alga Bonnemaisonia. Phytochemistry19: 233–247.10.1016/S0031-9422(00)81967-6Search in Google Scholar
Ní Chualáin, F., C.A. Maggs, G.W. Saunders and M.D. Guiry. 2004. The invasive genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): molecular systematics, morphology and ecophysiology of Falkenbergia isolates. J. Phycol.40: 1112–1126.Search in Google Scholar
Ryder, E., S.G. Nelson, C. McKeon, E.P. Glenn, K. Fitzsimmons and S. Napolean. 2004. Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture238: 207–219.10.1016/j.aquaculture.2004.05.019Search in Google Scholar
Sears, J.R. and R.T. Wilce. 1975. Sublittoral benthic marine algae of southern Cape Cod and adjacent islands: seasonal periodicity, associations, diversity and floristic composition. Ecol. Monogr.45: 337–365.Search in Google Scholar
Suneson, S. 1939. Om Trailliella intricata vid svenska kusten. Bot. Not.1939: 749–756.Search in Google Scholar
Tringali C. 1997. Bioactive metabolites from marine algae: recent results. Curr. Org. Chem.1: 375–394.10.2174/1385272801666220126161423Search in Google Scholar
van den Hoek, C. 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol. J. Lin. Soc.18: 81–144.10.1111/j.1095-8312.1982.tb02035.xSearch in Google Scholar
Westbrook, M.A. 1930. Notes on the distribution of certain marine red algae. J. Bot., London68: 257–264.Search in Google Scholar
Woolard, F.X., R.E. Moore and P.P. Roller. 1979. Halogenated acetic and acrylic acids from the alga Asparagopsis taxiformis. Phytochemistry18: 617–620.10.1016/S0031-9422(00)84271-5Search in Google Scholar
Yarish, C., A.M. Breeman and C. van den Hoek. 1984. Temperature, light, and photoperiod responses of some northeast American and west European endemic rhodophytes in relation to their geographic distribution. Helgol. Meeresunters.38: 273–304.Search in Google Scholar
©2005 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Optimum conditions for cultivation of the Trailliella phase of Bonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production
- Seasonal variation in vegetative growth and production of the endemic Japanese seagrass Zostera asiatica: a comparison with sympatric Zostera marina
- Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary
- Protoperidinium Bergh (Dinoflagellata) in the southeastern Mexican Pacific Ocean: part I
- Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii (Bacillariophyceae)
- Fungi on Juncus roemerianus. 17. New ascomycetes and the hyphomycete genus Kolletes gen. nov.
- Potential chemical defenses against diatom fouling in Antarctic macroalgae
- Halophilic black yeasts colonize wood immersed in hypersaline water
- Biological oceanography
Articles in the same Issue
- Optimum conditions for cultivation of the Trailliella phase of Bonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production
- Seasonal variation in vegetative growth and production of the endemic Japanese seagrass Zostera asiatica: a comparison with sympatric Zostera marina
- Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary
- Protoperidinium Bergh (Dinoflagellata) in the southeastern Mexican Pacific Ocean: part I
- Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii (Bacillariophyceae)
- Fungi on Juncus roemerianus. 17. New ascomycetes and the hyphomycete genus Kolletes gen. nov.
- Potential chemical defenses against diatom fouling in Antarctic macroalgae
- Halophilic black yeasts colonize wood immersed in hypersaline water
- Biological oceanography