Recognition of Spyridia griffithsiana comb. nov. (Ceramiales, Rhodophyta): a taxon previously misidentified as Spyridia filamentosa from Europe
-
Giuseppe C. Zuccarello
Abstract
Spyridia filamentosa is a commonly encountered species, especially in tropical and warm temperate locations. Molecular data, based on three genetic regions, plus morphological investigation of samples from the northeastern Atlantic reveal that samples identified as S. filamentosa from this area are distinct. Genetically these samples are more closely related to S. clavata than other S. filamentosa samples. Morphologically, the northeastern Atlantic Ocean samples are distinguishable by two (or occasionally one) small axial cells that lack cortication near the base of the determinate branches. Investigation of type material reveals that these samples should be recognized as Spyridia griffithsiana (J.E. Smith) Zuccarello, Prud'homme van Reine et Stegenga comb. nov. and that specimens of this new combination are found throughout the northeastern Atlantic Ocean and into the western Mediterranean Sea. Phylogeographic relationships within S. filamentosa show a complex distribution pattern. Samples from the same location can be in different evolutionary lineages (Cape Verde and Canary Islands). While some lineages seem to be confined to particular ocean basins, other lineages have a much wider distribution.
References
Agardh, C.A. 1817. Synopsis algarum Scandinaviae […]. Lund. pp. 135.Search in Google Scholar
Agardh, C.A. 1824. Systema algarum. Lund. pp. 312.10.5962/bhl.title.1829Search in Google Scholar
Agardh, C.A. 1828. Species algarum rite cognitae, […]. Vol. 2. Greifswald. pp. 189.Search in Google Scholar
Agardh, J.G. 1851. Species, genera, ordines algarum, […]Vol. 2. part 2. fasc. 1. Lund. pp. 337–504.Search in Google Scholar
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution42: 795–803.10.1111/j.1558-5646.1988.tb02497.xSearch in Google Scholar
Cruz-Ayala, M.B., M.M. Casas-Valdez and S. Ortega-Garcia. 1998. Temporal and spatial variation of frondose benthicseaweeds in La Paz Bay, B. C. S., Mexico. Bot. Mar.41: 191–198.10.1515/botm.1998.41.1-6.191Search in Google Scholar
Eriksson, T. 1998. AutoDecay ver. 4.0 (program distributed by the author at http://www.botan.su.se/Systematik/Folk/Torsten.html). Department of Botany, Stockholm University, Stockholm.Search in Google Scholar
Feldmann, J. and G. Feldmann 1943. Le développement des spores et le mode de croissance de la fronde chez le “Spyridia filamentosa” (Wulf.) Harv. Bull. Soc. Hist. Nat. Afr. Nord34: 213–221.Search in Google Scholar
Felsenstein, J. 1985. Confidence intervals on phylogenies: an approach using the bootstrap. Evolution39: 783–791.10.1111/j.1558-5646.1985.tb00420.xSearch in Google Scholar
Harper, J.T. and G.W. Saunders. 2001. The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cah. Biol. Mar.42: 25–38.Search in Google Scholar
Harvey, W.H. 1833. Confervoideae. In: (W.J. Hooker, ed.) British flora. Vol 2, part 1. London. pp. 322–385.Search in Google Scholar
Hasegawa, M., K. Kishino and T. Yano. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.22: 160–174.10.1007/BF02101694Search in Google Scholar
Hommersand, M.H. 1963. The morphology and classification of some Ceramiaceae and Rhodomelaceae. Univ. Calif. Publ. Bot.35: 165–366.Search in Google Scholar
Kützing, F.T. 1862. Tabulae phycologicae 12. Nordhausen.Search in Google Scholar
Maggs, C.A. and M.H. Hommersand. 1993. Seaweeds of the British Isles. Vol. 1. Rhodophyta, Part 3A Ceramiales. HMSO, London. pp. 444.Search in Google Scholar
Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics14: 817–818.10.1093/bioinformatics/14.9.817Search in Google Scholar
Silva, P.C., P.W. Basson and R.L. Moe. 1996. Catalogue of the benthic marine algae of the Indian Ocean. Univ. Calif. Publ.Bot.79: 1–1259.Search in Google Scholar
Smith, J.E. 1812. English botany. Plate 2312. London.Search in Google Scholar
South, G.R. and I. Tittley. 1986. A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. Huntsman Marine Laboratory and British Museum (Natural History). St. Andrews and London. pp. 76.Search in Google Scholar
Stegenga, H. and I. Mol. 1983. Flora van de Nederlandse Zeewieren. Koninklijke Nederlandse Natuurhistorische Vereniging. pp. 263.Search in Google Scholar
Stegenga, H., J.J. Bolton and R.J. Anderson. 1997. Seaweeds of the South African west coast. Contrib. Bolus Herbarium18: 1–655.Search in Google Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (http://paup.csit.fsu.edu/).Search in Google Scholar
Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol.10: 512–26.Search in Google Scholar
Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res.24: 4876–4882.10.1093/nar/25.24.4876Search in Google Scholar
Van der Strate, H.J., S. Boele-Bos, J.L. Olsen, L. van de Zande and W.T. Stam. 2002. Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J. Phycol.38: 572–582.10.1046/j.1529-8817.2002.01170.xSearch in Google Scholar
Womersley, H.B.S. 1998. The marine benthic flora of Southern Australia. Part IIIC. State Herbarium of South Australia, South Australia. pp. 535.Search in Google Scholar
Womersley, H.B.S. and S.A. Cartledge. 1975. The Southern Australian species of Spyridia (Ceramiaceae: Rhodophyta). Trans. R. Soc. South Australia99: 221–234.Search in Google Scholar
Wulfen, F.X. 1803. Cryptogama aquatica. Arch. Bot.3: 1–64.Search in Google Scholar
Wynne, M. 1998. A checklist of benthic marine algae of the tropical and subtropical western Atlantic: first revision. Nova Hedwigia116: 1–155.Search in Google Scholar
Zuccarello, G.C. and G. Lokhorst. 2004. Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data: monophyly of morphologically simple algal species. Phycologia. (in press).10.2216/0031-8884(2005)44[384:MPOTGT]2.0.CO;2Search in Google Scholar
Zuccarello, G.C. and J.A. West. 2002. Phylogeography of the Bostrychia calliptera/B. pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia41: 49–60.10.2216/i0031-8884-41-1-49.1Search in Google Scholar
Zuccarello, G.C. and J.A. West. 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol.39: 948–959.10.1046/j.1529-8817.2003.02171.xSearch in Google Scholar
Zuccarello, G.C., G. Burger, J.A. West and R.J. King. 1999a. A mitochondrial marker for red algal intraspecific relationships. Mol. Ecol.8: 1443–1447.10.1046/j.1365-294x.1999.00710.xSearch in Google Scholar
Zuccarello, G.C., J.A. West, M. Kamiya and R.J. King. 1999b. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia401: 207–214.10.1007/978-94-011-4201-4_15Search in Google Scholar
Zuccarello, G.C., B. Sandercock and J.A. West. 2002. Diversity in red algal species: variation in world-wide samples of Spyridia filamentosa (Ceramiaceae) and Murrayella periclados (Rhodomelaceae) using DNA markers and breeding studies. Eur. J. Phycol.37: 403–417.10.1017/S0967026202003827Search in Google Scholar
©2004 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Author index
- Contents volume 47
- Taxonomical index
- Subject index
- Macroalgal assemblage structure on a coral reef in Nanwan Bay in southern Taiwan
- The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata
- Reproduction in the green macroalga Codium (Chlorophyta): characterization of gametes
- Vegetative and reproductive morphology of Sargassum orotavicum sp. nov. (Fucales, Phaeophyceae) from the Canary Islands (eastern Atlantic Ocean)
- Recognition of Spyridia griffithsiana comb. nov. (Ceramiales, Rhodophyta): a taxon previously misidentified as Spyridia filamentosa from Europe
- Crystalline forms and cross-sectional dimensions of cellulose microfibrils in the Florideophyceae (Rhodophyta)
- Geographic and host distribution of lignicolous mangrove microfungi
- Spatial variation in littoral Codium assemblages on Jersey, Channel Islands (southern English Channel)
- Acknowledgement
Articles in the same Issue
- Author index
- Contents volume 47
- Taxonomical index
- Subject index
- Macroalgal assemblage structure on a coral reef in Nanwan Bay in southern Taiwan
- The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata
- Reproduction in the green macroalga Codium (Chlorophyta): characterization of gametes
- Vegetative and reproductive morphology of Sargassum orotavicum sp. nov. (Fucales, Phaeophyceae) from the Canary Islands (eastern Atlantic Ocean)
- Recognition of Spyridia griffithsiana comb. nov. (Ceramiales, Rhodophyta): a taxon previously misidentified as Spyridia filamentosa from Europe
- Crystalline forms and cross-sectional dimensions of cellulose microfibrils in the Florideophyceae (Rhodophyta)
- Geographic and host distribution of lignicolous mangrove microfungi
- Spatial variation in littoral Codium assemblages on Jersey, Channel Islands (southern English Channel)
- Acknowledgement