Home Methodik zur zerstörungsfreien Testung von Oberflächenbeschichtungen in der Endoprothetik Method of non-destructive mechanical testing of new surface coatings for prostheses
Article
Licensed
Unlicensed Requires Authentication

Methodik zur zerstörungsfreien Testung von Oberflächenbeschichtungen in der Endoprothetik Method of non-destructive mechanical testing of new surface coatings for prostheses

  • Felix Zeifang , Jörg Heinrich Holstein , Georgios Tosounidis , Wolfgang Görtz and Hans-Georg Simank
Published/Copyright: April 24, 2006
Become an author with De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 51 Issue 1

Zusammenfassung

Die Untersuchung neuer Oberflächenbeschichtungen und Oberflächenbearbeitungsmethoden für Endoprothesen ist derzeit Gegenstand intensiver Forschung. Ziel dieser Studie war es, eine innovative biomechanische Messmethode zur Überprüfung des Einwachsverhaltens von Knochenimplantaten zu testen. In einem transkortikalen Implantationsmodell wurden 28 Kaninchen oberflächenbeschichtete (n=14) und unbeschichtete (n=14) Titanplomben in die laterale Femurkondyle implantiert. Nach 6 Wochen oder 6 Monaten wurden die Tiere getötet, der Knochen entnommen und die Einwachsfestigkeit der Implantate biomechanisch und histologisch ausgewertet. Im Rahmen der biomechanischen Auszugsmessungen führten die belastungsabhängigen Relativ-bewegungen zwischen Knochen und Plombe bis zu einer Zugkraft von 50 N zu keiner Zerstörung des Knochen-Implantatverbundes (Interface). Somit konnten an einer Probe sowohl biomechanische als auch histologische Untersuchungen durchgeführt werden. Die Ergebnisse aus beiden Untersuchungen zeigten eine signifikante Korrelation (Korrelationskoeffizient -0,79; p<0,01) und waren reproduzierbar. Durch den Einsatz der zerstörungsfreien mechanischen Auszugsmessung wird die Anzahl der notwendigen Versuchstiere halbiert und eine Kontrolle der Ergebniskorrelation zwischen Histologie und Biomechanik ermöglicht. Die zerstörungsfreie mechanische Auszugsmessung stellt somit eine ideale Methode zur Untersuchung von neuen Implantatwerkstoffen, Oberflächenbeschichtungen und Oberflächenbearbeitungsmethoden in der Endoprothetik dar.

Abstract

Research into new surface coatings and surface processing methods for prostheses is subject to numerous studies. The aim of this study was to test an innovative biomechanical measuring method for the examination of the ingrowth of bone implants. Using a transcortical model, coated (n=14) or uncoated (n=14) titanic cylinders were implanted into the lateral condyle of 28 New Zealand White Rabbits. After 6 weeks or 6 months the animals were sacrificed and the osseointegration of the implants was evaluated biomechanically and histologically. Up to traction of 50 N the load dependent movement between bone and testing cylinder did not lead to a destruction of the bone-implant-interface. Therefore, biomechanical and histological investigations could be performed in the same specimen. The results of both evaluations showed a significant correlation (correlation coefficient -0.79; p<0.01) and were absolutely reproducible. With the method of non-destructive mechanical testing, it is possible to halve the number of required animals. Additionally, the results of the biomechanical and histological analysis can be compared and thus serve as an internal control. In summary, the method of non-destructive mechanical testing represents an ideal tool to study new surface coatings and surface processing methods for prostheses.

References

1 Allcock HR, Singh A, Ambrosio AM, Laredo WR. Tyrosine-bearing poyphosphazenes. Biomacromolecules2003; 4: 1646–1653.10.1021/bm030027lSearch in Google Scholar

2 Ambrosio AM, Sahota JS, Runge C, et al. Novel polyphosphazene-hydroxyapatite composites as biomaterials. Eng Med Biol Mag2003; 22: 18–26.10.1109/MEMB.2003.1256268Search in Google Scholar

3 Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res1999; 13: 99–119.10.1177/08959374990130012301Search in Google Scholar

4 Chang YS, Gu HO, Kobayashi M, Oka M. Influence of various structure treatments on histological fixation of titanium implants. J Arthroplasty1998; 13: 816–825.10.1016/S0883-5403(98)90037-7Search in Google Scholar

5 Dean JC, Tisdel CL, Goldberg VM, Parr J, Davy D, Stevenson S. Effects of hydroxyapatite tricalcium phosphate coating and intracancellous placement on bone ingrowth in titanium fibermetal implants. J Arthroplasty1995; 10: 830–838.10.1016/S0883-5403(05)80083-XSearch in Google Scholar

6 D'Lima DD, Lemperle SM, Chen PC, Holmes RE, Colwell, CW. Bone response to implant surface morphology. J Arthroplasty1998; 13: 928–934.10.1016/S0883-5403(98)90201-7Search in Google Scholar

7 Donath K, Breuner G. A method for the study of unde-calcificated bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J Oral Path1982; 11: 318–326.10.1111/j.1600-0714.1982.tb00172.xSearch in Google Scholar PubMed

8 Feighan JE, Goldberg VM, Davy D, Parr JA, Stevenson, S. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. J Bone Joint Surg1995; 77: 1380–1395.10.2106/00004623-199509000-00015Search in Google Scholar PubMed

9 Friedman RJ, An YH, Ming J, Draughn RA, Bauer TW. Influence of biomaterial surface texture on bone ingrowth in the rabbit femur. J Orthop Res1996; 14: 455–464.10.1002/jor.1100140316Search in Google Scholar PubMed

10 Gotz HE, Muller M, Emmel A, Holzwarth U, Erben RG, Stangl R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials2004; 25: 4057–4064.10.1016/j.biomaterials.2003.11.002Search in Google Scholar PubMed

11 Goldberg VM, Stevenson S, Feighan J, Davy D. Biology of grit-blasted titanium alloy implants. Clin Orthop1995; 319: 122–129.10.1097/00003086-199510000-00012Search in Google Scholar

12 Goldberg VM, Jinno T. The Bone-implant interface: a dynamic surface. J Long Term Eff Med Implants1999; 9: 11–21.Search in Google Scholar

13 Gondolph-Zink B. Influence of hydroxylapatit-coating on the osseointegration of weightbearing and non-weight-bearing implants in comparison to other surfaces with microporous structures. Orthopäde1998; 27: 96–104.10.1007/PL00003484Search in Google Scholar

14 Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Low temperature formation of hydroxyapatite-poly (alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials2005; 26: 1–9.10.1016/j.biomaterials.2004.02.016Search in Google Scholar

15 Haaker R, Senge A, Kramer J, Rubenthaler F. Osteomyelitis after endoprothesis. Orthopäde2004; 33: 431–438.10.1007/s00132-003-0624-xSearch in Google Scholar

16 Hörner K, Löffler K, Holtzmann M. Vergleich der histologischen Struktur der Kompakta der langen Röhrenknochen bei Maus, Hamster, Ratte, Meerschweinchen, Kaninchen, Katze und Hund während der Altersentwicklung. Anat Histol Embyol1997; 26: 289–295.10.1111/j.1439-0264.1997.tb00138.xSearch in Google Scholar

17 Huang Y, Liu X, Wang L, Li S, Verbeken E, de Scheerder I. Long-term biocompatibility evaluation of a novel polymer-coated stent in a porcine coronary stent model. Coron Artery Dis2003; 14: 401–408.10.1097/01.mca.0000084940.36114.94Search in Google Scholar

18 Konttinen YT, Zhao D, Beklen A, et al. The Microenvironment around total hip replacement prostheses. Clin Orthop Rel Res2005; 430: 28–38.10.1097/01.blo.0000150451.50452.daSearch in Google Scholar

19 Simank H-G, Stuber M, Frahm R, et al. The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials 2006; in press.10.1016/j.biomaterials.2006.02.041Search in Google Scholar

20 Thull R. Physicochemical principles of tissue material interactions. Biomol Eng2002; 19: 43–50.10.1016/S1389-0344(02)00009-6Search in Google Scholar

Online erschienen: 2006-04-24
Erschienen im Druck: 2006-04-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2006.002/html
Scroll to top button