Home Life Sciences Substrate recognition and translocation by polyspecific organic cation transporters
Article
Licensed
Unlicensed Requires Authentication

Substrate recognition and translocation by polyspecific organic cation transporters

  • Hermann Koepsell EMAIL logo
Published/Copyright: June 18, 2011
Biological Chemistry
From the journal Volume 392 Issue 1-2

Abstract

Organic cation transporters (OCTs) of the SLC22 family play a pivotal role in distribution and excretion of cationic drugs. They mediate electrogenic translocation of cations in both directions. OCTs are polyspecific transporters. During substrate translocation they perform a series of conformational changes involving an outward-facing conformation, an occluded state and an inward-facing conformation. Mutagenesis of OCT1 in combination with homology modeling showed that identical amino acids form the innermost parts of the outward-open and inward-open binding clefts. In addition to low affinity substrate binding sites, OCT1 contains high affinity substrate binding sites that can mediate inhibition via non-transported compounds.

Received: 2010-9-14
Accepted: 2010-10-11
Published Online: 2011-06-18
Published in Print: 2011-02-01

©2011 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Publisher’s Note
  2. Publisher’s Note
  3. Guest Editorial
  4. Highlight: Membrane transport in light of structure, function, and evolution
  5. HIGHLIGHT: MEMBRANE TRANSPORT IN LIGHT OF STRUCTURE, FUNCTION, AND EVOLUTION
  6. Pathways of transport protein evolution: recent advances
  7. Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts
  8. Omp85 in eukaryotic systems: one protein family with distinct functions
  9. Evolution of ABC transporters by gene duplication and their role in human disease
  10. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport
  11. The multidrug transporter Pdr5: a molecular diode?
  12. The lysosomal polypeptide transporter TAPL: more than a housekeeping factor?
  13. Pumping lipids with P4-ATPases
  14. Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery
  15. Substrate recognition and translocation by polyspecific organic cation transporters
  16. The ugly side of amphetamines: short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), methamphetamine and d-amphetamine
  17. SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells
  18. Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells
  19. Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases
  20. Structure determination of channel and transport proteins by high-resolution microscopy techniques
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2011.009/html
Scroll to top button