Involvement of heparan sulfate proteoglycans in cellular uptake of high molecular weight kininogen
-
Kátia R.B. Melo
, Augusto Gutierrez , Fábio D. Nascimento , Mariana S. Araújo , Misako U. Sampaio , Adriana K. Carmona , Yvette M. Coulson-Thomas , Edvaldo S. Trindade , Helena B. Nader , Ivarne L.S. Tersariol and Guacyara Motta
Abstract
In this study, we analyzed the influence of proteoglycans on the interaction between human high molecular weight kininogen (HK) and the cell surface. We found that D5-related peptide inhibits HK-biotin cellular uptake. Confocal microscopy showed that HK colocalizes with heparan sulfate proteoglycan (HSPG) at the cell surface. When biotin-HK is incubated with rabbit aorta endothelial cells (RAECs) and CHO-K1 cells, it is internalized into acidic intracellular vesicles, whereas when incubated with CHO-745 cells, which express reduced levels of glycosaminoglycans, HK is not internalized. To further verify the hypothesis that HSPG-dependent mechanisms are involved in HK uptake and proteolytic processing in lysosomes, we tested chloroquine, which blocks Alexa 488-HK colocalization with Lyso Tracker in acidic endosomal vesicles. The process of HK internalization was blocked by low temperatures, methyl-β-cyclodextrin, FCCP and 2-deoxy-d-glucose, implying that HK uptake into acidic vesicles is energy-dependent and most likely involves binding to HSPG structures localized in cholesterol-rich domains present in the plasma membrane. Kinin generation at the cell surface was much higher in tumorigenic cells (CHO-K1) when compared to endothelial cells (RAECs). The present data indicate that the process of HK endocytosis involving HSPG is a novel additional mechanism which may control kinin generation at the cell surface.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Minireview
- Functional genetic mouse models: promising tools for investigation of the proteolytic internet
- Protein Structure and Function
- Primary sequence, together with other factors, influence peptide deimination by peptidylarginine deiminase-4
- Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food
- Cell Biology and Signaling
- Interferon-γ-mediated pathways and in vitro PBMC proliferation in HIV-infected patients
- Exploring the pathogenesis of renal cell carcinoma: pathway and bioinformatics analysis of dysregulated genes and proteins
- Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis
- Involvement of heparan sulfate proteoglycans in cellular uptake of high molecular weight kininogen
- Overexpression of Pygopus2 protects HeLa cells from vinblastine-induced apoptosis
- Proteolysis
- Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases
- Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery
- Novel Techniques
- Isotope tracing enhancement of chemiluminescence assays for nitric oxide research
Articles in the same Issue
- Minireview
- Functional genetic mouse models: promising tools for investigation of the proteolytic internet
- Protein Structure and Function
- Primary sequence, together with other factors, influence peptide deimination by peptidylarginine deiminase-4
- Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food
- Cell Biology and Signaling
- Interferon-γ-mediated pathways and in vitro PBMC proliferation in HIV-infected patients
- Exploring the pathogenesis of renal cell carcinoma: pathway and bioinformatics analysis of dysregulated genes and proteins
- Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis
- Involvement of heparan sulfate proteoglycans in cellular uptake of high molecular weight kininogen
- Overexpression of Pygopus2 protects HeLa cells from vinblastine-induced apoptosis
- Proteolysis
- Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases
- Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery
- Novel Techniques
- Isotope tracing enhancement of chemiluminescence assays for nitric oxide research