Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence
-
Kotb Abdelmohsen
Abstract
To respond adequately to oxidative stress, mammalian cells elicit rapid and tightly controlled changes in gene expression patterns. Besides alterations in the subsets of transcribed genes, two posttranscriptional processes prominently influence the oxidant-triggered gene expression programs: mRNA turnover and translation. Here, we review recent progress in our knowledge of the turnover and translation regulatory (TTR) mRNA-binding proteins (RBPs) that influence gene expression in response to oxidative damage. Specifically, we identify oxidant damage-regulated mRNAs that are targets of TTR-RBPs, we review the oxidant-triggered signaling pathways that govern TTR-RBP function, and we examine emerging evidence that TTR-RBP activity is altered with senescence and aging. Given the potent influence of TTR-RBPs upon oxidant-regulated gene expression profiles, we propose that the senescence-associated changes in TTR-RBPs directly contribute to the impaired responses to oxidant damage that characterize cellular senescence and advancing age.
©2008 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Highlight: Oxidative Stress and Senescence
- Regulation of proteasome-mediated protein degradation during oxidative stress and aging
- Cellular responses to reactive oxygen species-induced DNA damage and aging
- Sirt1 protects the heart from aging and stress
- Klotho as a regulator of oxidative stress and senescence
- Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence
- Potential biomarkers of ageing
- Increased molecular damage and heterogeneity as the basis of aging
- Modulation of longevity-associated genes by estrogens or phytoestrogens
- FoxO transcription factors in oxidative stress response and ageing – a new fork on the way to longevity?
- Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation
- New biological activity against phospholipase A2 by Turmerin, a protein from Curcuma longa L.
- Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
- Kinetic properties of cathepsin D and BACE 1 indicate the need to search for additional β-secretase candidate(s)
Articles in the same Issue
- Highlight: Oxidative Stress and Senescence
- Regulation of proteasome-mediated protein degradation during oxidative stress and aging
- Cellular responses to reactive oxygen species-induced DNA damage and aging
- Sirt1 protects the heart from aging and stress
- Klotho as a regulator of oxidative stress and senescence
- Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence
- Potential biomarkers of ageing
- Increased molecular damage and heterogeneity as the basis of aging
- Modulation of longevity-associated genes by estrogens or phytoestrogens
- FoxO transcription factors in oxidative stress response and ageing – a new fork on the way to longevity?
- Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation
- New biological activity against phospholipase A2 by Turmerin, a protein from Curcuma longa L.
- Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
- Kinetic properties of cathepsin D and BACE 1 indicate the need to search for additional β-secretase candidate(s)