SARS-CoV accessory protein 7a directly interacts with human LFA-1
-
Karen Hänel
and Dieter Willbold
Abstract
The SARS-CoV accessory protein 7a is a type I membrane protein with an extracellular domain of 81 amino acid residues. It is described to be expressed during infection and to be a component of the virus particle surface. In this study, we demonstrate that protein 7a binds directly and specifically to human lymphocyte function-associated antigen 1 (LFA-1) on the cell surface of Jurkat cells. The binding is increased upon artificial cell activation with phorbol ester. These observations are confirmed by direct in vitro binding of recombinant protein 7a to the wild type and mutant K287C/K294C I domain showing that the I domain is the 7a binding site in the αL chain of LFA-1. Consequences of the LFA-1 interaction with 7a are discussed. In particular, our data suggest LFA-1 to be an attachment factor or the receptor for SARS-CoV on human leukocytes.
©2007 by Walter de Gruyter Berlin New York
Articles in the same Issue
- FOXM1, a typical proliferation-associated transcription factor
- Salivary agglutinin/glycoprotein-340/DMBT1: a single molecule with variable composition and with different functions in infection, inflammation and cancer
- A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences
- Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5)
- Lumazine proteins from photobacteria: localization of the single ligand binding site to the N-terminal domain
- SARS-CoV accessory protein 7a directly interacts with human LFA-1
- Overexpression and mass spectrometry analysis of mature human acid ceramidase
- Ultraviolet B radiation induces cell shrinkage and increases osmolyte transporter mRNA expression and osmolyte uptake in HaCaT keratinocytes
- Macrophage paraoxonase 2 (PON2) expression is upregulated by unesterified cholesterol through activation of the phosphatidylinositol 3-kinase (PI3K) pathway
- Acknowledgment
- Contents Biological Chemistry, Volume 388, 2007
- Author Index
- Subject Index
Articles in the same Issue
- FOXM1, a typical proliferation-associated transcription factor
- Salivary agglutinin/glycoprotein-340/DMBT1: a single molecule with variable composition and with different functions in infection, inflammation and cancer
- A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences
- Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5)
- Lumazine proteins from photobacteria: localization of the single ligand binding site to the N-terminal domain
- SARS-CoV accessory protein 7a directly interacts with human LFA-1
- Overexpression and mass spectrometry analysis of mature human acid ceramidase
- Ultraviolet B radiation induces cell shrinkage and increases osmolyte transporter mRNA expression and osmolyte uptake in HaCaT keratinocytes
- Macrophage paraoxonase 2 (PON2) expression is upregulated by unesterified cholesterol through activation of the phosphatidylinositol 3-kinase (PI3K) pathway
- Acknowledgment
- Contents Biological Chemistry, Volume 388, 2007
- Author Index
- Subject Index