Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice
-
Claudia Kiermayer
Abstract
Thioredoxin reductase 1 (Txnrd1) and thioredoxin reductase 2 (Txnrd2) are selenoproteins whose expression and function depends on adequate supply of the trace element selenium (Se). As homozygous (-/-) knockout of both Txnrd1 and Txnrd2 is embryonically lethal, we investigated the effect of their hemizygosity (+/-) alone and in combination with dietary Se on enzymatic activity in various tissues. To assess the overall health of the corresponding mice, the growth, viability and fertility of the different experimental groups were also compared. Se depletion led to a marked decrease in Se organ contents. Se depletion was most prominent in lung, followed by liver, kidney, heart, muscle and brain. We found no major effect of Txnrd1 or Txnrd2 hemizygosity and/or Se on male fertility and the viability of offspring. A gene dose effect under Se-adequate conditions for Txnrd1 and Txnrd2 in all organs was observed. Haploid insufficiency decreased Txnrd activity to an extent that can be further decreased by Se deficiency, but not to levels below those observed for Se depletion alone. The only exception was Txnrd2 activity in kidney, heart and muscle, where we found an additive effect.
©2007 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Selenoproteins – biochemistry and clinical relevance
- Selenium in mammalian spermiogenesis
- Selenium in chemistry and biochemistry in comparison to sulfur
- Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function
- Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals
- Activation of the glutathione peroxidase 2 (GPx2) promoter by β-catenin
- Effect of age on sexually dimorphic selenoprotein expression in mice
- Post-translational processing of selenoprotein P: implications of glycosylation for its utilisation by target cells
- Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3
- Towards understanding selenocysteine incorporation into bacterial proteins
- Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents
- B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance
- Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice
- Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Sec peptides
- An essential role for Pin1 in Xenopus laevis embryonic development revealed by specific inhibitors
- Glucocorticoid receptor-mediated expression of kallikrein 10 in human breast cancer cell lines
Articles in the same Issue
- Selenoproteins – biochemistry and clinical relevance
- Selenium in mammalian spermiogenesis
- Selenium in chemistry and biochemistry in comparison to sulfur
- Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function
- Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals
- Activation of the glutathione peroxidase 2 (GPx2) promoter by β-catenin
- Effect of age on sexually dimorphic selenoprotein expression in mice
- Post-translational processing of selenoprotein P: implications of glycosylation for its utilisation by target cells
- Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3
- Towards understanding selenocysteine incorporation into bacterial proteins
- Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents
- B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance
- Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice
- Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Sec peptides
- An essential role for Pin1 in Xenopus laevis embryonic development revealed by specific inhibitors
- Glucocorticoid receptor-mediated expression of kallikrein 10 in human breast cancer cell lines