Home Life Sciences Structure and expression of two kininogen genes in mice
Article
Licensed
Unlicensed Requires Authentication

Structure and expression of two kininogen genes in mice

  • C. C. Cardoso , T. Garrett , C. Cayla , P. Meneton , J. B. Pesquero and M. Bader
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 385 Issue 3-4

Abstract

Kininogens serve dual functions by forming a scaffold for the assembly of the protein complex initiating the surface-activated blood coagulation cascade and as precursors for the kinin hormones. While rats have three kininogen genes, for mice, cattle, and humans only one gene has been described. Here, we present sequence and expression data of a second mouse kininogen gene. The two genes, kininogen-I and kininogen-II, are located in close proximity on chromosome 16 in a headtohead arrangement. In liver and kidney, both genes are expressed and for each gene three alternative splice variants are synthesized. Two of them are the expected high and low molecular weight isoforms known from all mammalian kininogens. However, for both genes also a third, hitherto unknown splice variant was detected which lacks part of the high molecular weight mRNA due to splicing from the low molecular weight donor site to alternative splice acceptor sites in exon 10. The physiological functions of the six kininogen isoforms predicted by these findings need to be determined.

:
Published Online: 2005-06-01
Published in Print: 2004-04-13

Copyright © 2004 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Oxygen and the Cell
  2. O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide
  3. Oxidative stress in the systemic and cellular responses to intermittent hypoxia
  4. HIF hydroxylation and cellular oxygen sensing
  5. Visualization of the three-dimensional organization of hypoxia-inducible factor-1α and interacting cofactors in subnuclear structures
  6. Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes
  7. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells
  8. Measurement of exhaled hydrogen peroxide from rabbit lungs
  9. Effects of reducing agents on glutathione metabolism and the function of carotid body chemoreceptor cells
  10. Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission
  11. Remodelling of Ca2+ homeostasis in type I cortical astrocytes by hypoxia: evidence for association with Alzheimer's disease
  12. Simultaneous exposure of rats to dioxin and carbon monoxide reduces the xenobiotic but not the hypoxic response
  13. Structure and expression of two kininogen genes in mice
  14. The central domain of the matrix protein of HIV-1: influence on protein structure and virus infectivity
  15. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures
  16. Inhibition of lentil copper/TPQ amine oxidase by the mechanism-based inhibitor derived from tyramine
  17. Enhanced expression of basolateral multidrug resistance protein isoforms Mrp3 and Mrp5 in rat liver by LPS
  18. Critical O2 and NO concentrations in NO-induced cell death in a rat liver sinusoidal endothelial cell line
Downloaded on 23.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.025/html
Scroll to top button