Home Oxidant-Induced Signaling: Effects of Peroxynitrite and Singlet Oxygen
Article
Licensed
Unlicensed Requires Authentication

Oxidant-Induced Signaling: Effects of Peroxynitrite and Singlet Oxygen

  • L.-O. Klotz
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 383 Issue 3-4

Abstract

Following the requirement for cells to cope with oxidative stress, there are cellular adaptation mechanisms at the level of gene expression. Much of what is known about oxidantinduced signaling in mammalian cells was found in experiments using hydrogen peroxide as an oxidant. However, since the biochemical reactivities of various oxidants significantly differ, oxidative stress is not necessarily identical independent of the oxidant employed to bring it about. Here, the biological actions of peroxynitrite and singlet oxygen are presented, focusing on signaling effects. Peroxynitrite is generated in biological systems in the diffusioncontrolled reaction of superoxide with nitrogen monoxide and is thus likely to be produced in the vicinity of activated macrophages. Singlet oxygen is generated by stimulated neutrophils in vivo and may further be generated photochemically, e.g. upon exposure of cells to ultraviolet A radiation. Exposure of cells to either of these oxidants elicits a cellular stress response, entailing the activation of signaling cascades that regulate proliferative and apoptotic responses, such as mitogenactivated protein kinase cascades or the phosphoinositide 3-kinase/Akt cascade. Two mechanisms for the oxidantinduced activation of a signaling cascade may be envisaged: (i) the indirect targeting of the cascade by interrupting negative regulation, and (ii) an activating oxidation of one of the constituting components of the cascade. Examples for both mechanisms in relation to peroxynitrite and singlet oxygen are discussed.

:
Published Online: 2005-06-01
Published in Print: 2002-04-12

Copyright © 2002 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Highlight: Oxidative Stress
  2. Highlight: Oxidative Stress
  3. Peroxiredoxins
  4. 15-Lipoxygenase-1: A Prooxidant Enzyme
  5. Reactive Sulfur Species: An Emerging Concept in Oxidative Stress
  6. The Pathobiochemistry of Nitrogen Dioxide
  7. Nitric Oxide and Peroxynitrite Interactions with Mitochondria
  8. Nitric Oxide and Cell Signaling Pathways in Mitochondrial-Dependent Apoptosis
  9. Fatty Acid Oxidation and Signaling in Apoptosis
  10. Oxidant-Induced Signaling: Effects of Peroxynitrite and Singlet Oxygen
  11. The 80th Anniversary of Vitamin E: Beyond Its Antioxidant Properties
  12. Role of Endogenous Oxidative DNA Damage in Carcinogenesis: What Can We Learn from Repair-Deficient Mice?
  13. Mammalian Cell Injury Induced by Hypothermia the Emerging Role for Reactive Oxygen Species
  14. The Chelatable Iron Pool in Living Cells: A Methodically Defined Quantity
  15. Dietary Flavonoids as Potential Neuroprotectants
  16. Oxidative Nerve Cell Death in Alzheimers Disease and Stroke: Antioxidants as Neuroprotective Compounds
  17. A2E and Blue Light in the Retina: The Paradigm of Age-Related Macular Degeneration
  18. Interactions of Nitric Oxide and Peroxynitrite with Low-Density Lipoprotein
  19. Non-Antioxidant Properties of Carotenoids
  20. Proteolytic Response to Oxidative Stress in Mammalian Cells
  21. Neurospora crassa Catalases, Singlet Oxygen and Cell Differentiation
  22. The Cellular Hydration State: A Critical Determinant for Cell Death and Survival
  23. Redox Regulation of Stress Signals: Possible Roles of Dendritic Stellate TRX Producer Cells (DST Cell Types)
  24. Oxidative Stress, Spermatogenesis and Fertility
  25. Postprandial Oxidative Stress
  26. [18O]-Labeled Singlet Oxygen as a Tool for Mechanistic Studies of 8-Oxo-7,8-Dihydroguanine Oxidative Damage: Detection of Spiroiminodihydantoin, Imidazolone and Oxazolone Derivatives
  27. The Specificity of Lipoxygenase-Catalyzed Lipid Peroxidation and the Effects of Radical- Scavenging Antioxidants
  28. Human Neutrophils Oxidize Low-Density Lipoprotein by a Hypochlorous Acid- Dependent Mechanism: The Role of Vitamin C
  29. Perturbation of Lipid Metabolism by Linoleic Acid Hydroperoxide in CaCo-2 Cells
  30. Irreversible Thiol Oxidation in Carbonic Anhydrase III: Protection by S-Glutathiolation and Detection in Aging Rats
  31. Green Tea Extract Protects against Early Alcohol-Induced Liver Injury in Rats
  32. Comparing β-Carotene, Vitamin E and Nitric Oxide as Membrane Antioxidants
  33. Induction of Thioredoxin Reductase Gene Expression by Peroxynitrite in Human Umbilical Vein Endothelial Cells
  34. Activation of c-Jun N-Terminal Kinase and Apoptosis in Endothelial Cells Mediated by Endogenous Generation of Hydrogen Peroxide
  35. Detection of Poly(ADP-Ribose) by Immunocytochemistry: A Sensitive New Method for the Early Identification of UVB- and H2O2-Induced Apoptosis in Keratinocytes
  36. Efficacy of HOCl Scavenging by Sulfur- Containing Compounds: Antioxidant Activity of Glutathione Disulfide?
  37. Cysteine Supplementation Prevents Unweighting-Induced Ubiquitination in Association with Redox Regulation in Rat Skeletal Muscle
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2002.047/html
Scroll to top button