Divergent Evolution of (??)8-Barrel Enzymes
-
M. Henn-Sax
, B. Höcker , M. Wilmanns and R. Sterner
Abstract
The (?[alpha)8-barrel is the most versatile and most frequently encountered fold among enzymes. It is an interesting question how the contemporary (?[alpha)8-barrels are evolutionarily related and by which mechanisms they evolved from more simple precursors. Comprehensive comparisons of amino acid sequences and threedimensional structures suggest that a large fraction of the known (?[alpha)8-barrels have divergently evolved from a common ancestor. The mutational interconversion of enzymatic activities of several (?[alpha)8-barrels further supports their common evolutionary origin. Moreover, the high structural similarity between the N and Cterminal (?[alpha)4 units of two (?[alpha)8-barrel enzymes from histidine biosynthesis indicates that the contemporary proteins evolved by tandem duplication and fusion of the gene of an ancestral halfbarrel precursor. In support of this hypothesis, recombinantly produced halfbarrels were shown to be folded, dimeric proteins.
Copyright © 2001 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Highlight: Evolution in Vivo, in Vitro and in Machina
- Modeling Genetic Networks and Their Evolution: A Complex Dynamical Systems Perspective
- Evolution in Silico and in Vitro: The RNA Model
- Divergent Evolution of (??)8-Barrel Enzymes
- RNA-Catalyzed Carbon-Carbon Bond Formation
- Toward Automated Nucleic Acid Enzyme Selection
- Duocalins: Engineered Ligand-Binding Proteins with Dual Specificity Derived from the Lipocalin Fold
- The Stochastic Evolution of Catalysts in Spatially Resolved Molecular Systems
- Fragment-Based Flexible Ligand Docking by Evolutionary Optimization
- Specific Nucleoprotein Complexes within Adenovirus Capsids
- ERH (Enhancer of Rudimentary Homologue), a Conserved Factor Identical between Frog and Human, Is a Transcriptional Repressor
- Signal Transduction by the Chemokine Receptor CXCR5: Structural Requirements for G Protein Activation Analyzed by Chimeric CXCR1/CXCR5 Molecules
- Arginine-Specific Cysteine Proteinase from Porphyromonas gingivalis as a Convenient Tool in Protein Chemistry
- Chemokine-Induced Secretion of Gelatinase B in Primary Human Monocytes
Articles in the same Issue
- Highlight: Evolution in Vivo, in Vitro and in Machina
- Modeling Genetic Networks and Their Evolution: A Complex Dynamical Systems Perspective
- Evolution in Silico and in Vitro: The RNA Model
- Divergent Evolution of (??)8-Barrel Enzymes
- RNA-Catalyzed Carbon-Carbon Bond Formation
- Toward Automated Nucleic Acid Enzyme Selection
- Duocalins: Engineered Ligand-Binding Proteins with Dual Specificity Derived from the Lipocalin Fold
- The Stochastic Evolution of Catalysts in Spatially Resolved Molecular Systems
- Fragment-Based Flexible Ligand Docking by Evolutionary Optimization
- Specific Nucleoprotein Complexes within Adenovirus Capsids
- ERH (Enhancer of Rudimentary Homologue), a Conserved Factor Identical between Frog and Human, Is a Transcriptional Repressor
- Signal Transduction by the Chemokine Receptor CXCR5: Structural Requirements for G Protein Activation Analyzed by Chimeric CXCR1/CXCR5 Molecules
- Arginine-Specific Cysteine Proteinase from Porphyromonas gingivalis as a Convenient Tool in Protein Chemistry
- Chemokine-Induced Secretion of Gelatinase B in Primary Human Monocytes