Article
Licensed
Unlicensed
Requires Authentication
Projective models of K3 surfaces with an even set
-
Alice Garbagnati
and Alessandra Sarti
Published/Copyright:
September 11, 2008
Abstract
The aim of this paper is to describe algebraic K3 surfaces with an even set of rational curves or of nodes. Their minimal possible Picard number is nine. We completely classify these K3 surfaces and after a careful analysis of the divisors contained in the Picard lattice we study their projective models, giving necessary and sufficient conditions to have an even set. Moreover we investigate their relation with K3 surfaces with a Nikulin involution.
Received: 2007-01-16
Revised: 2007-10-04
Published Online: 2008-09-11
Published in Print: 2008-August
© de Gruyter 2008
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- A rigidity result for domains with a locally strictly convex point
- On the geometry of Grassmannian equivalent connections
- On Lie groups as quasi-Kähler manifolds with Killing Norden metric
- Relating the curvature tensor and the complex Jacobi operator of an almost Hermitian manifold
- A characterization of m-ovoids and i-tight sets of polar spaces
- On Grassmann secant extremal varieties
- Almost del Pezzo manifolds
- Projective models of K3 surfaces with an even set
- Nonrational del Pezzo fibrations
- Principal bundles over a smooth real projective curve of genus zero
Articles in the same Issue
- A rigidity result for domains with a locally strictly convex point
- On the geometry of Grassmannian equivalent connections
- On Lie groups as quasi-Kähler manifolds with Killing Norden metric
- Relating the curvature tensor and the complex Jacobi operator of an almost Hermitian manifold
- A characterization of m-ovoids and i-tight sets of polar spaces
- On Grassmann secant extremal varieties
- Almost del Pezzo manifolds
- Projective models of K3 surfaces with an even set
- Nonrational del Pezzo fibrations
- Principal bundles over a smooth real projective curve of genus zero