Home Sharply two-homogeneous infinite permutation groups (*)
Chapter
Licensed
Unlicensed Requires Authentication

Sharply two-homogeneous infinite permutation groups (*)

Become an author with De Gruyter Brill
Permutations
This chapter is in the book Permutations
Sharply two-homogeneous infinite permutation groups (*) P. CAMION CNRS, Paris 1. THE PROBLEM We use the terminology of H. Wielandt [4], k-homogeneous group. A group G of permutations on a set Q is fc-homo-geneous if it acts transitively on the set Pk(Q) of fc-substets of Q. Sharply k-homogeneous group. G is sharply ^-homogeneous if it acts regularly on Pk(Q). Frobenius group. G is a Frobenius group if it is transitive, nonregular and if G = 1 for a / ß. A sharply two-homogeneous group G is necessarily transitive and G = { 1 } for a / ß- Ga ^ { 1 }, which makes G nonregular. Hence G is a Frobenius group. When Q is a finite set, one may use the known results on Frobenius groups for studying sharply two-homogeneous groups. Lüneburg (see for example P. Dembowski [2]) characterizes those groups straightforward by means of the main theorem of Feit & Thompson, reducing the problem to that one of sharply two-transitive groups solved by Zassenhaus. Our aim is to study the problem of characterizing sharply two-homogeneous groups when Q is not necessarily finite. This leads to a better look inside the problem for finite Q and raises questions on infinite groups, Frobenius groups or other groups. From now on, we shall refer to the property of being sharply two-homoge-neous as to property Pl. We shall now verify without the help of the theorem of Frobenius, that a finite Frobenius group has property P2 (*) This study followed a conversation with M. Schützenberger.
© 2020 Walter de Gruyter GmbH, Berlin/Munich/Boston

Sharply two-homogeneous infinite permutation groups (*) P. CAMION CNRS, Paris 1. THE PROBLEM We use the terminology of H. Wielandt [4], k-homogeneous group. A group G of permutations on a set Q is fc-homo-geneous if it acts transitively on the set Pk(Q) of fc-substets of Q. Sharply k-homogeneous group. G is sharply ^-homogeneous if it acts regularly on Pk(Q). Frobenius group. G is a Frobenius group if it is transitive, nonregular and if G = 1 for a / ß. A sharply two-homogeneous group G is necessarily transitive and G = { 1 } for a / ß- Ga ^ { 1 }, which makes G nonregular. Hence G is a Frobenius group. When Q is a finite set, one may use the known results on Frobenius groups for studying sharply two-homogeneous groups. Lüneburg (see for example P. Dembowski [2]) characterizes those groups straightforward by means of the main theorem of Feit & Thompson, reducing the problem to that one of sharply two-transitive groups solved by Zassenhaus. Our aim is to study the problem of characterizing sharply two-homogeneous groups when Q is not necessarily finite. This leads to a better look inside the problem for finite Q and raises questions on infinite groups, Frobenius groups or other groups. From now on, we shall refer to the property of being sharply two-homoge-neous as to property Pl. We shall now verify without the help of the theorem of Frobenius, that a finite Frobenius group has property P2 (*) This study followed a conversation with M. Schützenberger.
© 2020 Walter de Gruyter GmbH, Berlin/Munich/Boston

Chapters in this book

  1. Frontmatter I
  2. Table des matières VII
  3. Préface IX
  4. Liste des participants XI
  5. 1. Groupes et groupes de permutations
  6. Allgemeine Methoden in der Theorie der Permutationsgruppen 3
  7. Geometrie methods in the theory of abstract infinite groups 9
  8. On the role of certain classes of elements in the theory of permutation groups 15
  9. Groupes de permutations associés aux codes préfixes finis 19
  10. On composition factors of finite doubly transitive permutation groups 37
  11. Sur les caractères de permutations d'un groupe fini 43
  12. Sharply two-homogeneous infinite permutation groups (*) 49
  13. Ordered permutation groups 57
  14. Un groupe d'automorphismes d'algèbre de groupe abélien 65
  15. 2. Algèbre et combinatoire
  16. A survey of some combinatorial aspects of symmetric functions 79
  17. Nombre de cycles d'une permutation et caractères du groupe symétrique 93
  18. Classification des permutations suivant certaines propriétés ordinales de leur représentation plane 97
  19. On a generalization of permutations Some properties of transformations 117
  20. Problèmes posés en théorie des permutations par la résolution des équations bipermutationnelles dans les monoïdes libres 121
  21. Sur une catégorie de systèmes algébriques qui ont pour ensembles de base des ensembles de couples de permutations 135
  22. Sur certaines relations d'ordre dans les groupes symétriques finis ou infinis 167
  23. 3. Logique
  24. Etude d'un groupe de permutations des entiers naturels lié au groupe des automorphismes du treillis des ensembles récursivement énumérables 189
  25. Problématique apportée par les relations en théorie des permutations 211
  26. Théorème de G-recollement (d'une famille d'ordres totaux) Application aux relations monomorphes, extension aux multirelations 229
  27. 4. Algorithmique
  28. Programs for permutation groups 241
  29. Sorting of permutations 251
  30. Permutations et logique combinatoire 257
  31. 5. Histoire. Epistémologie
  32. Permutations tropicales 271
  33. Des permutations au XVIe et au XVIIe siècles 277
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783112311943-009/html?licenseType=restricted&srsltid=AfmBOorK8PgcVGBNbJKrxzIILtXIA77WnCu7a4yPwJvEh1kqc1FyAI7n
Scroll to top button