Startseite Mathematik Pattern Recognition
book: Pattern Recognition
Buch
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pattern Recognition

Introduction, Features, Classifiers and Principles
  • Jürgen Beyerer , Raphael Hagmanns und Daniel Stadler
Sprache: Englisch
Veröffentlicht/Copyright: 2024
Veröffentlichen auch Sie bei De Gruyter Brill
De Gruyter Textbook
Dieses Buch ist Teil der Reihe

Über dieses Buch

The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features: their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book.

  • Mathematical methods explained thoroughly.

  • Extremely practical approach with many examples.

  • Based on over 18 years lecture at the Karlsruhe Institute of Technology.

  • For students but also for practitioners.

  • Information zu Autoren / Herausgebern

    Prof. Dr.-Ing. Jürgen Beyerer has been a full professor for informatics at the Institute for Anthropomatics and Robotics at the Karlsruhe Institute of Technology KIT since March 2004 and director of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB in Ettlingen, Karlsruhe, Ilmenau, Görlitz, Lemgo, Oberkochen and Rostock. Research interests include automated visual inspection, signal and image processing, variable image acquisition and processing, active vision, metrology, information theory, fusion of data and information from heterogeneous sources, system theory, autonomous systems and automation.

    Raphael Hagmanns graduated with a master's degree in computer science at the Karlsruhe Institute of Technology (KIT) in 2020. Since this year, he has been pursuing his Ph.D. at the Vision and Fusion Laboratory under Prof. Beyerer's supervision. He conducts research in the fields of mobile robotics and computer vision, particularly on semantically informed mapping and inspection systems for robotic systems in unstructured environments. His research work is carried out in close collaboration with the Autonomous Robotic Systems Group at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), where his methods are employed in the field of decontamination robotics. Hagmanns is the author of different scientific publications and datasets, for notable examples being the GOOSE dataset for semantic segmentation in unstructured environments.

    He has also been involved in the organization of conference workshops on unstructured scene understanding and contributed various talks in workshops at renowned conferences.

    Together with Daniel Stadler, Hagmanns has been supervising the pattern recognition lecture at KIT for several years and has co-authored the second edition of the book on the lecture, which was published in 2024.

    Daniel Stadler completed his master’s degree in electrical engineering and information technology at Karlsruhe Institute of Technology (KIT) with distinction in 2019. He then joined the Vision and Fusion Laboratory of KIT to pursue his PhD under the supervision of Prof. Jürgen Beyerer. His main research topic is multi-object tracking in 2D videos, on which he has published a dozen of scientific papers at top computer vision conferences including CVPR, ECCV, and WACV. Currently, he is completing his PhD thesis that focuses on improving the use of available information in multi-person tracking.

    Stadler also works in close collaboration with the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, where he develops detection and tracking methods for various applications ranging from aerial traffic analysis to maritime person search. With his team, he won the honorable mention for the third place in the VisDrone 2020 Multi-Object Tracking Challenge and achieved the second place in the 2024 Maritime Computer Vision UAV-based Multi-Object Tracking with ReID Challenge.

    In 2024, Stadler co-authored the second edition of the textbook "Pattern Recognition", which is based on the eponymous lecture of Prof. Beyerer at KIT that he co-supervises.


    Öffentlich zugänglich PDF downloaden
    I

    Öffentlich zugänglich PDF downloaden
    V

    Öffentlich zugänglich PDF downloaden
    VII

    Öffentlich zugänglich PDF downloaden
    IX

    Öffentlich zugänglich PDF downloaden
    XIII

    Öffentlich zugänglich PDF downloaden
    XV

    Öffentlich zugänglich PDF downloaden
    XIX

    Öffentlich zugänglich PDF downloaden
    XXIII

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    1

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    10

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    103

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    132

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    161

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    180

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    191

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    257

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    273

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    293

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    307

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    311

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    315

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    319

    Erfordert eine Authentifizierung Nicht lizenziert

    Lizenziert
    PDF downloaden
    325

    Informationen zur Veröffentlichung
    Seiten und Bilder/Illustrationen im Buch
    eBook veröffentlicht am:
    1. April 2024
    eBook ISBN:
    9783111339207
    Broschur veröffentlicht am:
    1. April 2024
    Broschur ISBN:
    9783111339191
    Auflage:
    2nd edition
    Seiten und Bilder/Illustrationen im Buch
    Frontmatter:
    21
    Inhalt:
    327
    Abbildungen:
    17
    Farbige Abbildungen:
    140
    Tabellen:
    6
    Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783111339207/html
    Button zum nach oben scrollen