Home Mathematics Chapter 8 Digital Twin Use Cases and Industries
Chapter
Licensed
Unlicensed Requires Authentication

Chapter 8 Digital Twin Use Cases and Industries

  • Yogini Borole , Pradnya Borkar , Roshani Raut , Vijaya Parag Balpande and Prasenjit Chatterjee
Become an author with De Gruyter Brill
Digital Twins
This chapter is in the book Digital Twins

Abstract

Digital twin (DT) is among the most key techniques pushing digitalisation in a variety of sectors. The digital reproduction or model of any actual item is referred to as DT (physical twin). The automated bidirectional nature of DT distinguishes it from modelling as well as other digitised or AutoCAD models, and real-time data transmission between digital and corporeal twins. The advantages of applying DT in reduced operating expenses and time, higher productivity, and better decision-making are all advantages in any industry. Enhanced predictive/preventive maintenance, and so forth. As a consequence, its adoption is projected to increase. In the coming decades, as Industry 4.0 products and systems are introduced, they will develop quickly, relying on incremental data collection and storage. Connecting that data to DTs properly may open up numerous new opportunities, and this study investigates several industrial areas where DT implementation has access to these chances and how these prospects are propelling the industry ahead. The chapter discusses DT applications in 13 sectors, including industry, agricultural, educational, infrastructure, medicine, and retail, as well as industrial use cases in these areas.

Abstract

Digital twin (DT) is among the most key techniques pushing digitalisation in a variety of sectors. The digital reproduction or model of any actual item is referred to as DT (physical twin). The automated bidirectional nature of DT distinguishes it from modelling as well as other digitised or AutoCAD models, and real-time data transmission between digital and corporeal twins. The advantages of applying DT in reduced operating expenses and time, higher productivity, and better decision-making are all advantages in any industry. Enhanced predictive/preventive maintenance, and so forth. As a consequence, its adoption is projected to increase. In the coming decades, as Industry 4.0 products and systems are introduced, they will develop quickly, relying on incremental data collection and storage. Connecting that data to DTs properly may open up numerous new opportunities, and this study investigates several industrial areas where DT implementation has access to these chances and how these prospects are propelling the industry ahead. The chapter discusses DT applications in 13 sectors, including industry, agricultural, educational, infrastructure, medicine, and retail, as well as industrial use cases in these areas.

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110778861-008/html?lang=en
Scroll to top button