Home Mathematics 5. Convective regularization for optical flow
Chapter
Licensed
Unlicensed Requires Authentication

5. Convective regularization for optical flow

  • José A. Iglesias and Clemens Kirisits
Become an author with De Gruyter Brill
Variational Methods
This chapter is in the book Variational Methods

Abstract

We argue that the time derivative in a fixed coordinate frame may not be the most appropriate measure of time regularity of an optical flow field. Instead, for a given velocity field v we consider the convective acceleration vt +∇vv which describes the acceleration of objects moving according to v. Consequently, we investigate the suitability of the nonconvex functional ‖vt + ∇vv‖2L 2 as a regularization term for optical flow. We demonstrate that this term acts as both a spatial and a temporal regularizer and has an intrinsic edge-preserving property. We incorporate it into a contrast invariant and time-regularized variant of the Horn-Schunck functional, prove the existence of minimizers and verify experimentally that it addresses someof the problems of basic quadratic models. For the minimization we use an iterative scheme that approximates the original nonlinear problem with a sequence of linear ones.We believe that the convective acceleration may be gainfully introduced in a variety of optical flow models.

Abstract

We argue that the time derivative in a fixed coordinate frame may not be the most appropriate measure of time regularity of an optical flow field. Instead, for a given velocity field v we consider the convective acceleration vt +∇vv which describes the acceleration of objects moving according to v. Consequently, we investigate the suitability of the nonconvex functional ‖vt + ∇vv‖2L 2 as a regularization term for optical flow. We demonstrate that this term acts as both a spatial and a temporal regularizer and has an intrinsic edge-preserving property. We incorporate it into a contrast invariant and time-regularized variant of the Horn-Schunck functional, prove the existence of minimizers and verify experimentally that it addresses someof the problems of basic quadratic models. For the minimization we use an iterative scheme that approximates the original nonlinear problem with a sequence of linear ones.We believe that the convective acceleration may be gainfully introduced in a variety of optical flow models.

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110430394-005/html
Scroll to top button