Chapter
Licensed
Unlicensed
Requires Authentication
Chapter 3. Mittag-Leffler modules
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents vii
- Introduction xvii
- List of Symbols xxv
-
Part I. Some useful classes of modules
- Chapter 1. S-completions 3
- Chapter 2. Pure-injective modules 22
- Chapter 3. Mittag-Leffler modules 47
- Chapter 4. Slender modules 80
-
Part II. Approximations and cotorsion pairs
- Chapter 5. Approximations of modules 115
- Chapter 6. Complete cotorsion pairs 131
- Chapter 7. Hill lemma and its applications 155
- Chapter 8. Deconstruction of the roots of Ext 196
- Chapter 9. Modules of projective dimension one 221
- Chapter 10. Kaplansky classes and abstract elementary classes 228
- Chapter 11. Independence results for cotorsion pairs 253
- Chapter 12. The lattice of cotorsion pairs 266
-
Part III. Tilting and cotilting approximations
- Chapter 13. Tilting approximations 295
- Chapter 14. 1-tilting modules and their applications 330
- Chapter 15. Cotilting classes 364
- Chapter 16. Tilting and cotilting classes over commutative noetherian rings 382
- Chapter 17. Tilting approximations and the finitistic dimension conjectures 400
- Bibliography 419
- Index 451
-
Part IV Prediction principles
- Chapter 18. Survey of prediction principles using ZFC and more 461
- Chapter 19. Prediction principles in ZFC: the Black Boxes and others 478
-
Part V. Endomorphism algebras and automorphism groups
- Chapter 20. Realising algebras – by algebraically independent elements and by prediction principles 531
- Chapter 21. Automorphism groups of torsion-free abelian groups 578
- Chapter 22. Modules with distinguished submodules 597
- Chapter 23. R-modules and fields from modules with distinguished submodules 636
- Chapter 24 Endomorphism algebras of אn-free modules 659
-
Part VI. Modules and rings related to algebraic topology
- Chapter 25. Localisations and cellular covers, the general theory for R-modules 719
- Chapter 26. Tame and wild localisations of size ≤ 2 ℵ0 752
- Chapter 27. Tame cellular covers 773
- Chapter 28. Wild cellular covers 782
- Chapter 29. Absolute E-rings 792
-
Part VII. Cellular covers, localisations and E(R)-algebras
- Chapter 30. Large kernels of cellular covers and large localisations 815
- Chapter 31. Mixed E(R)-modules over Dedekind domains 832
- Chapter 32. E(R)-modules with cotorsion 840
- Chapter 33. Generalised E(R)-algebras 853
- Chapter 34. Some more useful classes of algebras 913
- Bibliography 933
- Index 965
Chapters in this book
- Frontmatter i
- Contents vii
- Introduction xvii
- List of Symbols xxv
-
Part I. Some useful classes of modules
- Chapter 1. S-completions 3
- Chapter 2. Pure-injective modules 22
- Chapter 3. Mittag-Leffler modules 47
- Chapter 4. Slender modules 80
-
Part II. Approximations and cotorsion pairs
- Chapter 5. Approximations of modules 115
- Chapter 6. Complete cotorsion pairs 131
- Chapter 7. Hill lemma and its applications 155
- Chapter 8. Deconstruction of the roots of Ext 196
- Chapter 9. Modules of projective dimension one 221
- Chapter 10. Kaplansky classes and abstract elementary classes 228
- Chapter 11. Independence results for cotorsion pairs 253
- Chapter 12. The lattice of cotorsion pairs 266
-
Part III. Tilting and cotilting approximations
- Chapter 13. Tilting approximations 295
- Chapter 14. 1-tilting modules and their applications 330
- Chapter 15. Cotilting classes 364
- Chapter 16. Tilting and cotilting classes over commutative noetherian rings 382
- Chapter 17. Tilting approximations and the finitistic dimension conjectures 400
- Bibliography 419
- Index 451
-
Part IV Prediction principles
- Chapter 18. Survey of prediction principles using ZFC and more 461
- Chapter 19. Prediction principles in ZFC: the Black Boxes and others 478
-
Part V. Endomorphism algebras and automorphism groups
- Chapter 20. Realising algebras – by algebraically independent elements and by prediction principles 531
- Chapter 21. Automorphism groups of torsion-free abelian groups 578
- Chapter 22. Modules with distinguished submodules 597
- Chapter 23. R-modules and fields from modules with distinguished submodules 636
- Chapter 24 Endomorphism algebras of אn-free modules 659
-
Part VI. Modules and rings related to algebraic topology
- Chapter 25. Localisations and cellular covers, the general theory for R-modules 719
- Chapter 26. Tame and wild localisations of size ≤ 2 ℵ0 752
- Chapter 27. Tame cellular covers 773
- Chapter 28. Wild cellular covers 782
- Chapter 29. Absolute E-rings 792
-
Part VII. Cellular covers, localisations and E(R)-algebras
- Chapter 30. Large kernels of cellular covers and large localisations 815
- Chapter 31. Mixed E(R)-modules over Dedekind domains 832
- Chapter 32. E(R)-modules with cotorsion 840
- Chapter 33. Generalised E(R)-algebras 853
- Chapter 34. Some more useful classes of algebras 913
- Bibliography 933
- Index 965